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Common practice: Cobb-Douglas

Yt is output at time t, a function of,
• Kt , Lt , Rt  inputs of capital, labor and natural 

resource services .
• α, + β + γ = 1, (constant returns to scale assumption)
• At is total factor productivity
• Ht , Gt and Ft coefficients of factor quality
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Economic Production Functions
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A Critical Perspective: Energy, 
Exergy and Useful Work

• Energy is conserved. The energy input to a process 
or transformation is always equal to the energy 
output. This is the First Law of thermodynamics.

• However the output energy is always less available
to do useful work than the input. This is the Second 
Law of thermodynamics, sometimes called the 
entropy law. 

• Energy available to do useful work is exergy. 
• Exergy is a factor of production.



Exergy and Useful Work, Con’t
• Capital is inert. It must be activated. Most economists 

regard labor as the activating agent. Labor (by 
humans and/or animals) was once the only source of 
useful work in the economy. 

• But machines (and computers) require a different 
activating agent, exergy that can be converted to 
useful work (in the thermodynamic sense).

• For economic growth models, useful work can be 
considered as a factor of production.
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EXERGY   - DEFINITION
MAXIMUM WORK OBTAINABLE FROM
A SUBSYSTEM APPROACHING
THERMODYNAMIC EQUILIBRIUM

EFFICIENCY   - DEFINITION
RATIO OF ACTUAL WORK PERFORMED
TO MAXIMUM WORK (EXERGY)







US Estimated Energy “Efficiencies” (LLNL, Based on DOE)

Sector 1950 1970 1990 2000 2008

Electricity 
Generation

0.25 0.36 0.33 0.31 0.32

Residential & 
Commercial

0.73 0.75 0.75 0.75 0.80

Industrial 0.72 0.75 0.75 0.80 0.80

Transport 0.26 0.25 0.25 0.20 0.24

Aggregate 0.50 0.50 0.44 0.38 0.42
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Useful Work and Economic Growth

• Since the industrial revolution, human and animal 
labor have been increasingly replaced by machines. 

• Some tried to include energy in growth theory 
(1970s) but there is a theorem that energy output 
elasticity equals cost share in the national accounts.  

• The theorem does not apply to a multi-sector 
economy with three factors of production, with 
physical constraints on the input ratios. Either too 
much or too little exergy per machine doesn’t work.



For the USA, a = 0.12, b = 3.4 (2.7 for Japan) 

Corresponds to Y = K 0.38 L0.08 U 0.56

• At , 'total factor productivity', is REMOVED

• Resources (Energy & Materials) replaced by WORK 

• Ft = energy-to-work conversion efficiency

• Factors ARE MUTUALLY DEPENDENT

• Empirical elasticities DO NOT EQUAL COST SHARE

The linear-exponential (LINEX) production function 
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Economic Production Functions: II
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Interim Conclusions
• The LINEX production function with useful work 

as a third factor explains past economic growth 
rather well, with only two parameters. Statistical 
causality analysis confirms that GDP growth does 
not drive energy or useful work consumption, but 
useful work does drive GDP growth. 

• N.B. Adding information capital to conventional 
capital achieves an even better fit in recent years. 
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Model - Simulated and Empirical Capital, USA 1900-2000
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Model - Logistic and Bi-Logistic S-curve Fits to
the Trend of Aggregate Technical Efficiency in the US 1900-2000
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Model - Energy Intensity of GDP, USA 1900-2000
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US Model - Historical (1950-2000) and Forecast (2000-2050)
Technical Efficiency of Energy Conversion

for Alternate Rates of Technical Efficiency Growth
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US Model - Historical (1950-2000) and Forecast (2000-2050) GDP
for Alternate Rates of  Technical Efficiency Growth
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Exergy Intensity of GDP Indicator
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Exergy to Useful Work Conversion Efficiency
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Why Are The Others More Efficient? 

• Part of the difference is higher population density. 
Energy consumption in compact cities is more 
efficient than urban sprawl. 

• Part due to is more public transport, more small 
cars, more diesel. More bicycles.

• Part is buildings (multi-family, masonry vs. single 
family wood-frame). 

• Part is more use of combined heat and power (CHP)
• Part is due to much higher energy prices.



On the Existence of “Free Lunches” in the 
Real Economy

• An economist was walking with his grandson. The 
boy sees a $100 bill lying on their path. The 
economist says “that must be a forgery. If it were 
real, somebody would have picked it up already.” 

• Most PhD economists insist that (1) the economy is 
in (or very near) equilibrium, and (2) when in 
equilibrium, that free lunches can’t exist for long 
because some entrepreneur would soon take 
advantage of the opportunity.  

• Problem: all sorts of barriers.



But Empirical Evidence of Neglected-
Opportunities is Very Strong 

• Many examples have been discussed (but 
economists always say they are exceptional).

• However, here is one that is hard to shrug off. In 
1981 Ken Nelson, an engineer at Dow, Louisiana 
Division, proposed an “energy contest”. The GM 
agreed, on condition that only projects with a 1-year 
or less payback would be supported. ROI in Year 1 
was 169%. The contest continued for 12 years. In 
the last three years ROIs averaged 300%.  



1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

Winning Projects
Capital, $MM
Average ROI (%)
ROI Cut-Off (%)

Savings, $M/yr
   Fuel Gas(a)

   Capacity
   Maintenance
   Miscellaneous

27
1.7
173
100

2970
83
10
    

32
2.2
340
100

7650
-63
45
    

38
4.0
208
100

6903
1506

-59
    

59
7.1

124
50

7533
2498
187
    

60
7.1
106
40

7136
798
357
    

90
10.6

97
30

5530
3747
2206
  19

94
9.3
182
30

4171
13368

583
 -98

64
7.5
470
30

3050
32735
1121
154

115
13.1
122
30

5113
8656
1675
2130

108
8.6
309
30

2109
17909
2358
5270

109
6.4
305
50

5167
11645
2947
518

140
9.1
298
50

4586
20311
2756
788

Total Savings 3063 7632 8350 10218 8291 11502 18024 37060 17575 27647 20277 28440

Source: (Nelson and Rosenberg 1993): Tables 4 and 6

Summary of Dow Energy Contest Results – All Projects



US mid-range abatement curve 2030

Source: McKinsey & Co.
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What is the Best Way to Cut Exergy 
Costs in Metal Production?

• In the cases of steel and aluminum there may not be 
much potential efficiency gain in the near term, 
although studies suggest gains of up to 20% as older 
facilities are replaced.

• To cut exergy consumption in metals the best 
solution is to use less metal in the product (e.g. 
replace copper wire by glass fiber) or 

• Recycle much more. This is mainly a systems 
(reverse logistics) problem.
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Energy Efficiency in Manufacturing?
• In the case of primary metals and some chemicals 

one can make fairly accurate calculations. Up to 
50% is now possible in some cases (with BAT). 

• The efficiency of  a complex multi-stage process 
with losses at every stage is much lower: a 6-stage 
process with 90 % efficiency at each stage is only 
24 % efficient overall. 

• To save energy the best strategy is re-use, 
renovation, re-manufacturing and recycling.



Example: How We Could Cut Energy 
Consumption in Transportation

• Discourage private automobiles by parking fees, 
congestion fees, bus-taxi lanes,etc.

• Use cars more efficiently (e.g. commuter vans, 
special lanes for high occupancy vehicles, etc.)

• Improve public transportation, e.g. with Bus Rapid 
Transit (BRT), integration of urban networks, etc.

• Encourage more use of bicycles, including e-bikes.
• And encourage EVs, with free recharge stations 



So, Why Isn’t It Happening? Why 
Doesn’t the ‘Invisible Hand’ Work?

• Economists deny that win-win opportunities exist, 
but there are plenty of examples (e.g. Dow)

• From an ‘inside’ business perspective, the question 
is ‘why do firms not invest in profitable energy-
saving opportunities that do exist? Survey questions 
highlight managerial problems, lack of expertise, 
lack of capital, and even lack of time (managers are 
busy “putting out fires”)  



Why Don’t Firms Invest in Profitable 
Energy-Saving Opportunities?

• From an ‘outside’ business perspective, the answer 
is really simple: the prevailing managerial culture 
puts much more emphasis on growth than on cost-
saving or profit-maximizing. 

• Why is this the case? The answer is probably that 
growth, in a competitive environment, is seen as the 
key to survival. Firms that don’t grow will die or be 
swallowed up by bigger rivals. 



Why Don’t Firms Invest in Profitable 
Energy-Saving Opportunities (con’t)?

• From a societal perspective, the answer is even 
simpler: the biggest and most powerful firms that 
exist today got big by capturing and selling natural 
resources. (The biggest firms in the world are oil 
companies. They make money by selling oil.) 

• On the other hand, hardly any firms make profits by 
saving energy or helping others save it. One 
problem with that line of business is that success 
puts you out of business.  



Many Opportunities Exist Now, But They 
Are Prevented by Barriers

• Energy has been too cheap and is still subsidized; too many 
people think cheap energy is a “right” like health care.

• Managers do not realize where easy savings are possible
• Managers (and investors) are focused on growth, not saving 
• Developers minimize construction cost, not operating cost. 
• Energy expertise is scarce; trust in consultants is scarcer
• Inefficient technologies (like utility monopolies) are 

“locked in” by economies of adoption and scale. 
• Government regulations prohibit some sensible options



Crossing the Energy Divide by Increasing 
Efficiency (Barrier Busting)

• There are huge opportunities for energy recycling 
but they are resisted by monopoly electric power 
companies. We need true utility de-regulation, plus 
“feed-in tariffs” (like Germany and 40 other 
countries) to kick-start decentralized power.

• Stop subsidizing cars: Start with parking fees, 
congestion charges, bus-lanes, bicycle lanes, etc. 

• Get rid of regulations that inhibit innovation, such 
as the New Source Standards regulations.



Barrier Busting, Continued

• The greatest barrier of all is the growth imperative: 
the deep-seated conviction that growth assures 
survival in the competitive global race. 

• But the race is to where? Growth that consumes 
limited resources is itself unsustainable. A new 
paradigm is urgently needed.  

• The new paradigm must focus on re-use, renovation, 
remanufacturing and recycling. The energy firms 
need to sell efficiency, and energy security, not fuel.  



Energy Service Companies: A New 
Business Opportunity

• Fact: improving energy efficiency in homes and 
industrial establishments requires special skills

• Fact: firms try to focus on their “core business. 
They are reluctant to invest in projects that do not 
pay for themselves in a few months or a year. 

• Opportunity: firms with special skills can pay for 
the investments, share the savings, and make 
profits. However, ESCs need legal support, finance, 
insurance, economies of scale and “success stories”. 



Conclusion
• Current approaches are counter-productive: CCS 

cuts efficiency, ethanol competes with food. 
• Even with government help, the transition to wind, 

solar and geothermal, from a very small starting  
share of the total, will take several decades

• There are ways to bridge the gap by using fossil 
energy much more efficiently (as Europe and Japan 
already do), without radical new technology

• The key is to recognize and bust the barriers.
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