UCLA

ACEEE Symposium: Energy Efficiency and the Future of Manufacturing In the US and Canada

Building Meaningful Use Priorities, Consensus and an Actionable Program Agenda for Smart Process Manufacturing

Jim Davis, UCLA Sujeet Chand, Rockwell Automation SPM Steering Committee July 2010

Definition of SPM

Smart Process Manufacturing (SPM) is a dramatically intensified knowledge-enabled industrial enterprise in which ALL business and operating actions are executed to achieve substantially enhanced energy, sustainability, environmental, safety and economic performance

Implies Infrastructure and Application Simulation Based Engineering & Science (SBE&S) Networked Information & Control Technologies (NICT) UCLA

Smart Manufacturing Transformation

- Ultimate vision is to create significant and measurable improvements in U.S. manufacturing competitiveness through innovative, highly-optimized, demand-dynamic and sustainable industrial plants and supply chains enabled by information and knowledge technologies
- Key goals:
 - Move to proactive operations and life-cycle management to optimize production economics, quality, safety and efficiency
 - Drive energy, sustainability, EH&S and economic agility into meaningful integrated performance criteria
 - Transform manufacturing from fixed, supplier-driven production to flexible, demand-dynamic production
 - Enable sustainable production of nationally strategic goods (e.g., Bio/Nano, Clean Energy, Green/Tech, and DOD needs.)
 - Build manufacturing intelligence

Increase U.S. manufacturing competitiveness and exports 7/29/2010 Revitalize the 21st Century industrial community model

3

Bending the Curve Toward Smart Manufacturing Achieving Meaningful Use of Production Data

These goals can be achieved only through connected information, model-based decision-making and knowledgeenabled processes that improve manufacturing outcomes and accelerate the generation of manufacturing intelligence

> Demand-dynamic, Highly-optimized Plants & Supply Networks

End-to-end Networked information, Control, Management Computational modeling Improved Sustainability and Competitiveness

7/29/2010

"Phased steps to improve manufacturing intelligence and drive new efficiencies."

Smart Manufacturing 1.0: Integrated Decision-Making

End-to-end data and information connectivity across the plant floor

Copyright © 2009 Rockw

Smart Manufacturing 2.0: Enterprise-wide End-to end Connectivity

Highly-optimized Production and Demand-Dynamic Supply Chain Efficiency

Lane 5

The Consumer in the Optimized, Demand-Dynamic Plants and Supply Networks?

Closing the loop in Pulp & Paper Supply Chains

International Center for Industrial Ecology

- Whereas <u>productivity</u> measures are used to improve a "linear" process
- <u>Efficiency</u> measures are used to improve a "closed loop" process

• Advanced modeling and software simulation are critical to improve the efficiency of very complex closed loop processes

Source: Yale University's School of Forestry & Environmental Studies' Center for Industrial Ecology

The transformation of IT-connected manufacturing to optimized plants & supply networks may be essential to efficiently manage this vision

Jobs Surround The Smart Factories In The Optimized Plant & Supply Chain Network

Manufacturing Transformation to SMART Achieving Meaningful Use

Actionable Program Agenda

CTO/CXO Roundtable and Leadership Workshop

- Meaningful Use criteria
- Roadmap actions
- Technology development
- Collaboration model
- Industries
 - Continuous, batch and discrete
 - Large and small companies
 - Practitioner and supplier
 - Information technology. NICT and SBE&S
- Academia, Government and Manufacturing Consortia

http://www.oit.ucla.edu/smart_process_manufacturing