

The Nuts and Bolts of Wind Energy

William Haman, P.E.

ACEEE Forum on Energy Efficiency in Agriculture Des Moines, IA November 14-16, 2005

What is Wind?

IOWA ENERGY CENTER

What is Wind?

- Wind is a byproduct of solar energy
- Approximately 2% of solar energy reaching the earth is converted to wind

Wind results from

- uneven heating & cooling of earth
- creates atmospheric pressure gradients
- gradients force air movement from areas of high pressure to low pressure

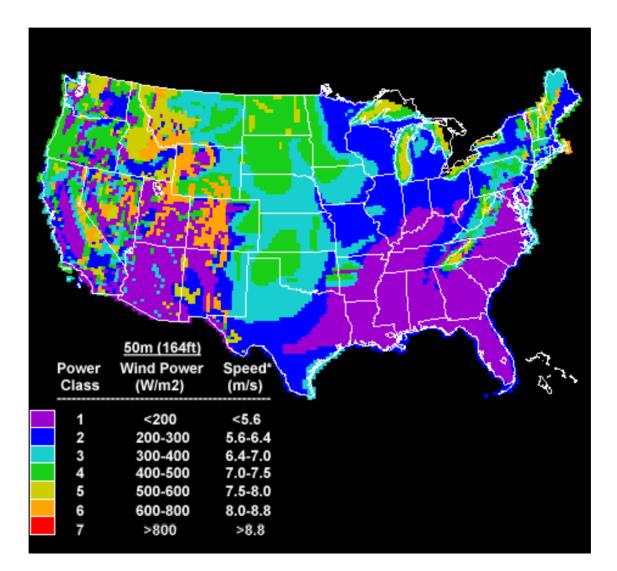
Physics of Wind Power

Power = $\frac{1}{2}\rho Av^{3}\eta$

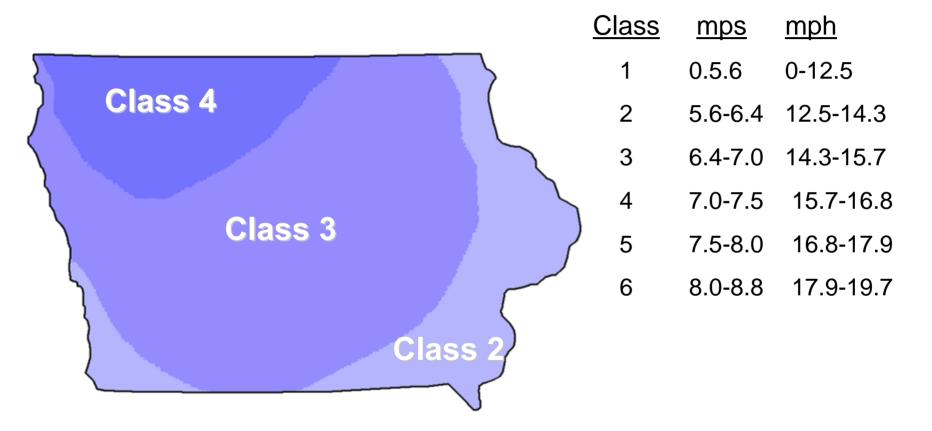
- ρ = specific gravity of air
 - function of air temperature and elevation
- A = cross sectional area of swept blades
- v = wind velocity
 - function of height above ground

•
$$V_2 = V_1 (H_2 / H_1)^{0.2}$$

- η = loss factor
 - function of wind direction relative to turbine orientation
 - function of ground turbulence effects
 - function of turbine design


Wind Velocity vs. Power

Velocity 1 (mph)	Velocity 2 (mph)	% Power Increase	
7	10.1	300	
10	12.6	100	
15	16	21	
15	17	46	
15	18	73	


U.S. Wind Resources

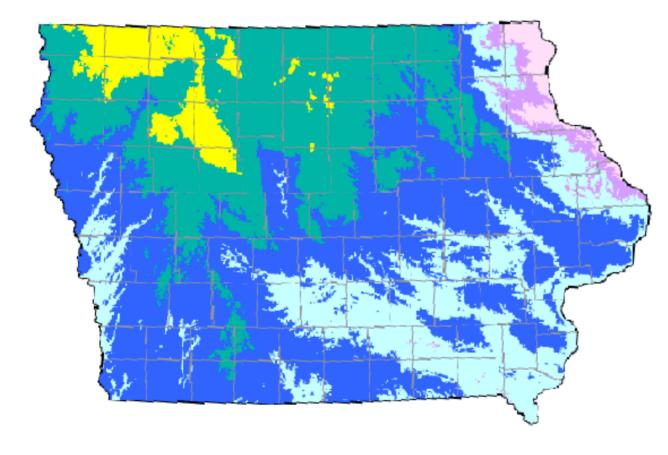
NREL Wind Power Classes

From Elliott et al., 1987, *Wind Energy Resource Atlas for the United States*, National Renewable Energy Laboratory.

Study Parameters

- 2.5 years (1994-97) of data at 60-minute interval
- 3 years (1997-99) of data at 10-minute interval
- 14 permanent monitoring stations; 2 mobile stations; 7 NWS airport stations
- GIS-based computer model

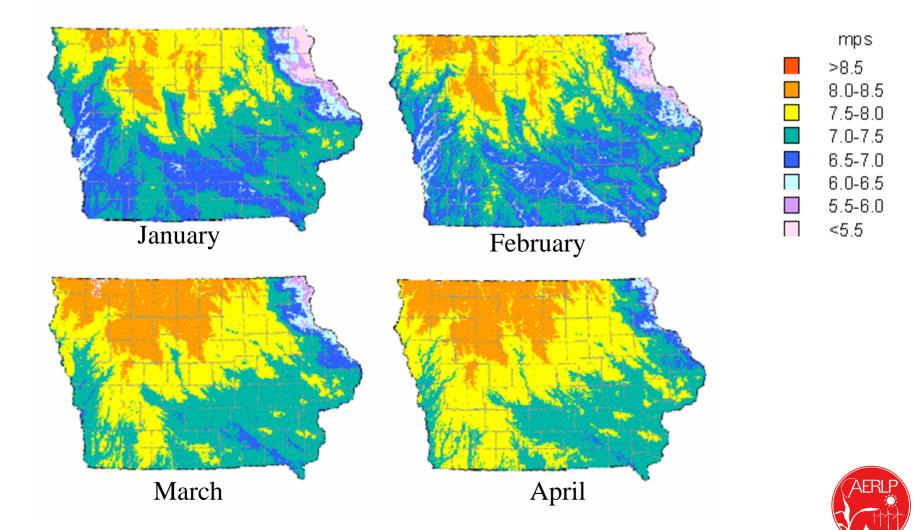
Study Investigators


- Iowa Wind Energy Institute
- Brower & Company

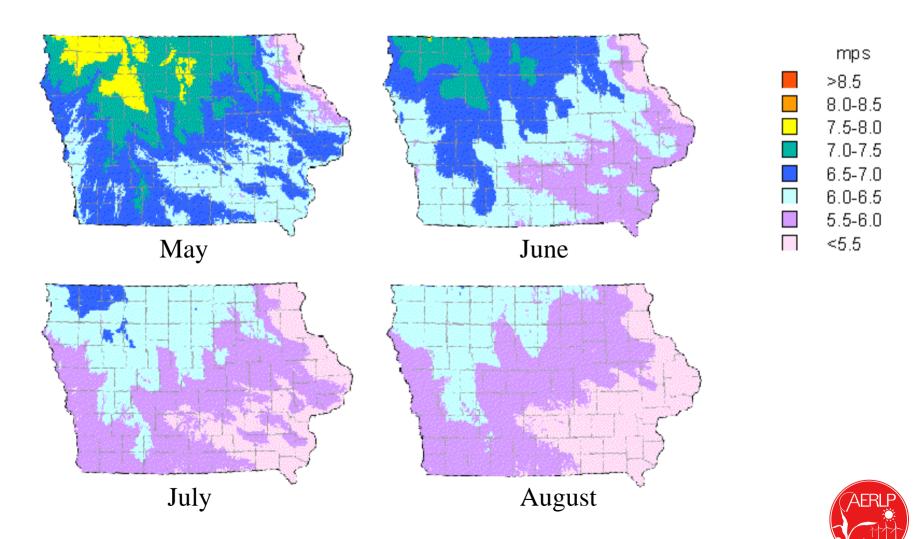
Estimated Average Annual Wind Speeds

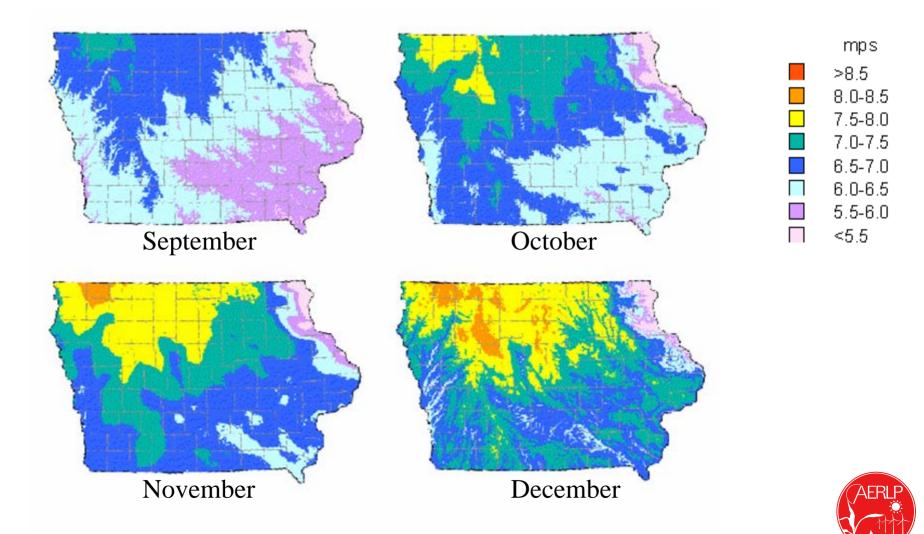
Typical average wind speeds on well exposed sites at 50 m above ground

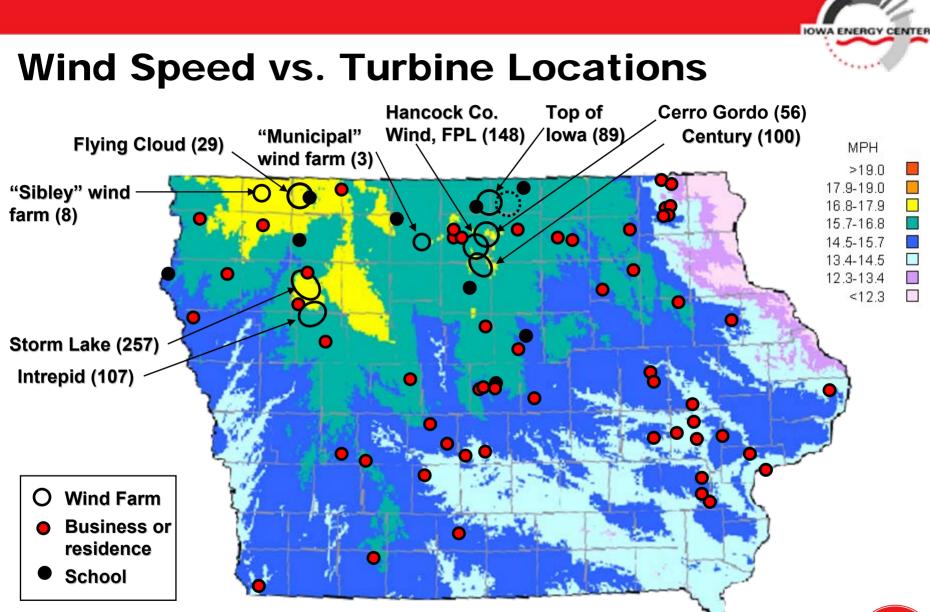
MPH	m/s		
>19.0	>8.5		
17.9-19.0	8.0-8.5		
16.8-17.9	7.5-8.0		
15.7-16.8	7.0-7.5		
14.5-15.7	6.5-7.0		
13.4-14.5	6.0-6.5		
12.3-13.4	5.5-6.0		
<12.3	<5.5		


Iowa Energy Center

This map was generated from data collected by the Iowa Wind Energy Institute under Iowa Energy Center Grant No. 93-04-02. The map was created using a model developed by Brower & Company, Andover, MA.


Copyright © 1997, Iowa Energy Center. All rights reserved. This map may not be republished without the written consent of the Iowa Energy Center.





Status of Wind Energy in Iowa

Wind Facts

- Iowa is the nation's 10th windiest state and ranks 3rd in total wind energy generation behind California and Texas
- Approximately 782 MW installed capacity
- Approximately 50 MW under construction
- Approximately 130 MW planned capacity
- ~ 814 existing utility-scale turbines (>50 kW)
- Many farm/residential units

Wind Turbine Site Considerations

- Highest general elevation
- On a ridge line perpendicular to prevailing winds
- Flat or gently rolling ground
- Low height ground cover
- No significant wind breaks/obstructions
- Proximity to airport(s) and utility grid
- Zoning and safety issues

Wind Development Planning

Identify a champion to lead the effort

Perform a feasibility study

- Evaluate energy load profile
- Evaluate energy efficiency opportunities
- Evaluate wind resources (macro level)
- Complete micro-site resource assessment
- Complete project design
- Negotiate with electric utility
 - Interconnection agreement
 - Power Purchase contract
- Finance project
- Bid and Construct

Key Elements For Wind Development

Location, Location, Location

- Within a good wind regime
- Close proximity to utility grid
- Favorable terrain features
- Permitting and "good neighbor" barriers
 - Urban vs. Rural
 - Tower height restrictions
 - Noise and liability considerations

Power Consumer vs. Power Supplier Viewpoint

- Retail vs. wholesale vs. avoided cost value of power
- Load profile consistent with wind turbine generation
- Favorable Utility Contracts
 - Interconnection and Power Purchase Agreements
 - Net Metering
- Favorable Financing Package
 - Property and production tax credits
 - Grants and loans

IEC Wind Calculator

- Demonstrate monthly variation in wind speeds
- Use with turbine power curve to help determine if site has minimum required wind resource
- Estimate electricity production for a given site under varying conditions
 - different turbine models
 - turbine hub heights
 - Ioss factors
- Model will not account for local obstructions
 - these must be determined on a case-by-case basis

Wind Turbine Calculator Input

Site Search				
nome > renewable > Wind Turbine Output Calculator				
Wind Turbine Output Calcula	tor			
Currently Viewing Cities For Woodbury County	Switch To A Different County			
Select Town:	Sioux City 💌			
Select Period (Hold down Shift, Ctrl, or Command To Select Multiple)	All Annual January			
Use best in 8 km: (Annual Only)	Yes: O No: 💿			
Select Turbine Type:	Vestas V15 65 kW; 65 kW			
Select Units of Measurement:	Metric: O English:			
Enter Tower Height (meters/feet): (Enter in meters if "Metric" was selected. Enter in feet if "English" was selected)	120			
Enter Number of Turbines:	1			
Enter Loss Factor (%):	12			
Display Frequency Distributions:	No 🐱			
Calculate				

back | renewable | home

Wind Turbine Calculator Output

Site Search

home > renewable > Wind Turbine Output Calculator

Wind Turbine Output Results

	Average Speed (mph)	Air Density *	Average Wind Power Density (W/m2)	Capacity Factor (%)	Estimated Output for Period (kWh)
Annual	13.81	1.221	242	21.66	123,658
Jan	14.45	1.277	266	24.51	11,371
Feb	14.47	1.273	280	24.83	10,437
Mar	15.43	1.239	316	27.49	13,141
Арг	15.5	1.211	333	27.36	12,955
Мау	13.77	1.182	229	20.75	10,400
June	13.11	1.162	192	18.12	8,933
July	11.97	1.150	137	13.82	7,123
Aug	12	1.153	135	13.74	7,058
Sep	12.98	1.169	177	17.37	8,516
Oct	13.96	1.204	224	21.30	10,477
Nov	14.39	1.243	279	24.15	11,139
Dec	14.34	1.274	274	24.40	11,344

City: Sioux City Turbine: Vestas V15 65 kW Tower Height: 120 feet

* Air densities are estimated from standard atmospheric densities corrected for the monthly average surface temperature and the elevation above sea level.

IOWA ENERGY CENTER

Wind Energy Costs

Capital costs are declining

- technology advancements
- economies of scale
- utility scale wind farms are competitive with new fossil fuel power plants (\$0.041 - 0.045/kWh)

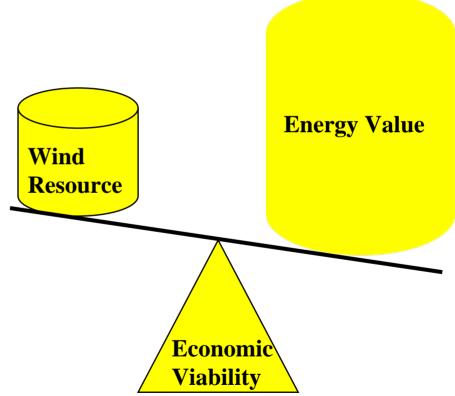
Installed costs

- small/residential (< 10 kW) \$2,500 \$3,800/kW</p>
- medium/commercial (10 300 kW) \$3,000 \$2,000/kW
- Iarge/utility scale (600 1,650 kW) \$1,500 \$900

Maintenance costs

- \$0.005 \$0.01/kWh
- increases with age of turbine

Wind Power Economic Viability


Economic viability is a function of:

- wind resource (mph)
- value of energy (\$/kWh)

Multiple scenarios

- high wind resource + high energy value
- high wind resource + low energy value
- low wind resource + high energy value
- average wind resources + average energy value

Cost-to-Benefit Analysis

Renewable Energy Financing

- Alternate Energy Revolving Loan Program
 - Zero-interest financing through lowa Energy Center
- Energy Bank Program
 - Low-interest financing via Iowa Dept. of Natural Resources Energy Bureau
- Federal wind production tax credit
 - 1.9 cent/kWh inflation adjusted production tax credit for electricity produced by turbine owner
- Federal Renewable Energy Production Incentive (REPI)
 - 1.5 cent/kWh energy payment for local/state government entities
- Local sales and property tax incentives
- USDA Grants Renewable Energy Systems and Energy Efficiency Improvements Program
 - Farm and Rural Investment Act of 2002
 - 25% cost share (\$2,500 minimum and \$500,000 maximum)
 - Annual solicitation
- Iowa Wind Energy Production Tax Credit


Alternate Energy Revolving Loan Program

■AERLP Funds

- •up to 50% of the financed project cost
- •\$250,000 maximum
- •0% interest rate
- •20 year maximum term
- •negotiated repayment schedule
- •repayments revolved back into fund for further loans

■Lender Funds

- •matching funds not less than AERLP
- •market rate interest rate
- Ioan term not less than AERLP term
- repayment collection & distribution to AERLP

For More Information

http://www.energy.iastate.edu

Contact Energy Center

2521 Elwood Dr Ste 124 Ames, IA 50010-8229 515-294-8819 iec@energy.iastate.edu

