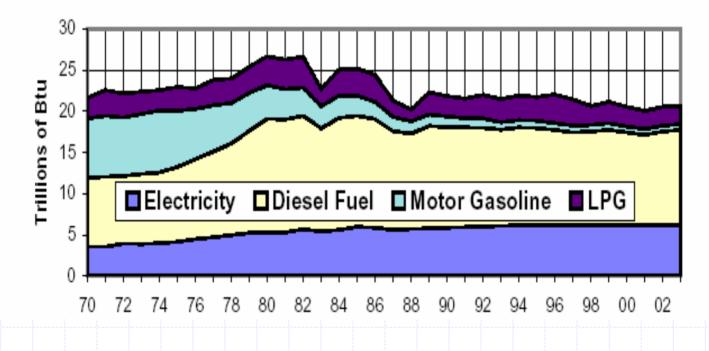
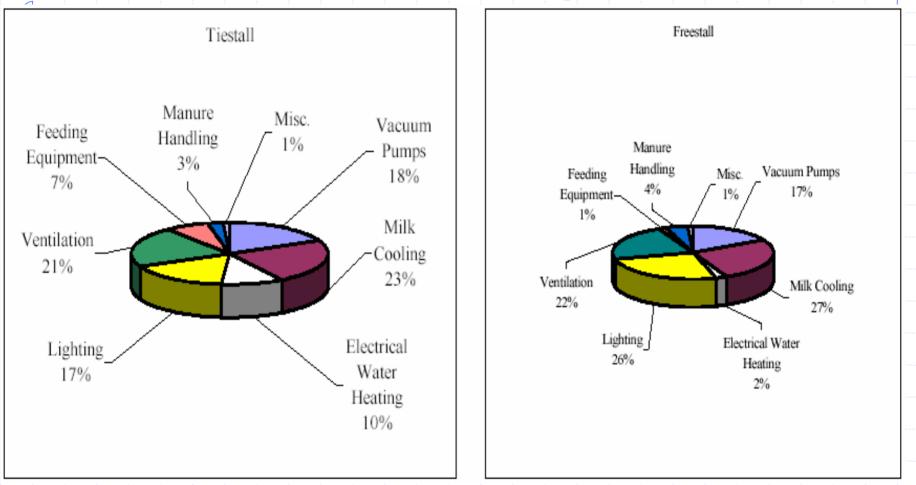
Capturing Energy Efficiencies on Dairy Farms

Scott Sanford Sr. Outreach Specialist Focus On Energy / Rural Energy Program University of Wisconsin – Madison



This presentation is funded in part by the Wisconsin Focus on Energy program


Wisconsin Agricultural Energy Use, in Btu, by Type of Fuel, 1970-2003

(Trillions of Btu and Percent of Total)

Agricultural energy use has been nearly constant since the late 1980s due to offsetting increases in mechanization and automation and land taken out of production. End use energy used in Wisconsin agriculture is now almost 20 percent below the peak reached in 1980.

NYS Dairy Farm Survey Electrical Usage

Source: Dairy Farm Energy Audit Summary, NYSERDA, July 2003

What is needed to conserve energy?

- Adapt new technology
 - Variable Speed drives
- Upgrade older less efficient equipment
 Reciprocating compressors to Scroll types
- Change management practices
 Scheduled maintenance program

Energy Conservation – Win/Win

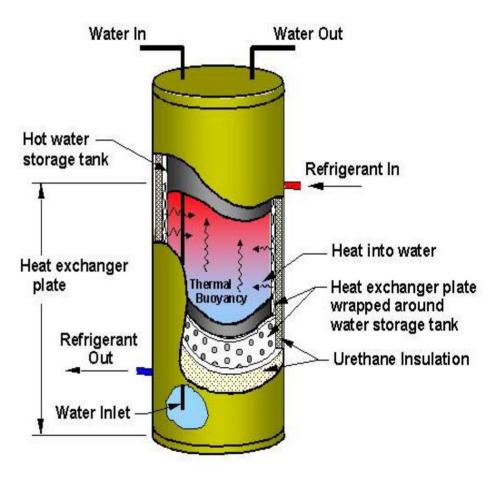
Results:Save Money!!

Same or Better quality with improved processes

Low Management Requirements

 High-Efficiency equipment saves energy with minimal maintenance

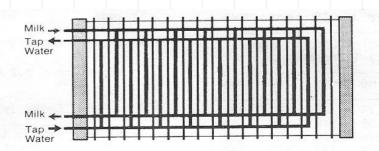
Expansion / Re-modeling / Replacing


- Up-sizing for larger operation
- Becomes economical to upgrade
- Replace equipment because of old age

Energy Conservation in Dairy Enterprises

- Refrigeration
- Vacuum systems
- Water Heating
- Ventilation
- Lighting
- Water Fountains

Refrigeration Heat Recovery Unit


Refrigeration Systems

- Refrigeration Heat Recovery (RHR)
 - Captures eject heat from refrigeration system
 - Potential to reduce water heating costs up to 50%
 - Increases compressor efficiency
 - Can accommodate 2 compressor units
- All-in-One Heat Recovery / Water Heater
 - Heater in tank reduces potential heat recovery
 - Electric water heating costs more.
 - Not Recommended Turn off heating element and purchase a larger gas or oil water heater.

Well Water Precoolers

- Uses well water as coolant
- Potential to reduce cooling requirements by 60%
 - Up to 40°F temperature reduction
- Water supply critical for savings potential
- Need 1" piping
 - 1:1 water:milk ratio Minimum
- Herd size > 100 to 150 cows

Variable speed milk pump

- Makes precooler more efficient by decreasing milk flow rate.
- Increases water:milk flow ratio
- Useful for low capacity water systems or large farms
- Typical 15°F increase in milk cooling

Equipment Interactions

Precooler energy savings = 1unit
 Refrigeration Heat Recovery =1 unit

♦ Precooler + RHR \neq 2 units

Hot water use drives the economics!!!
Cheaper to refrigerate milk than heat water!

Dairies with < 100 cows
Generally only use either / or not both
Cover water heating needs first

Refrigeration Compressors

Scroll Compressor Technology

- 15-20% more efficient than standard reciprocating compressor.
- If buying new or must replace compressor

 Specify: Scroll compressors

Can directly replace reciprocating compressors if:

- Condenser unit is in well maintained condition
- Capacity of new compressor is within 5% of existing compressor (BTU/Hr)
- Requires new mounting holes & rewiring of controls
- Incremental cost \$300-\$500

Condenser Unit Maintenance

Condenser Unit Maintenance

- Clean condensing unit 2X/yearly min.
 - Electrical Savings <u>3 to 5% from cleaning alone</u>
 - Use Condenser / Evaporator coil cleaner only
 - DISCONNECT POWER BEFORE CLEANING
 - Keep brushes, vines, trees trimmed
 - Open winter covers when weather warms
 - Lubricate louvers and check proper operation of power opening louvers and exhaust fans
 - Service Check Refrigerant level and pressures yearly

Water Heating

- Average water heater
 - 80% Thermal Efficiency
 - 60% Standby heat loss per day (2.5%/hour)
 - Overall efficiency: ~ 50 to 55%

High Efficiency water heaters

- Condensing types 90%+ efficient
- Low standby losses 1% per hour (24%/day)
- Purchase well insulated water heaters
 Use Commercial Water Heaters
- Water heater Ratings:
 - Gas Appliance Manufacturers Association <u>www.gamanet.org/</u>

Use warm water directly from RHR for non-critical washing

Variable Speed Vacuum Pump

- Typically reduces VP electrical usage by 60%.
 Ranges from 30 to 80%.
- Pumps require minimum RPM
 Iubrication and cooling.
- Oversize pump head reduces potential savings.
 - Air volume per revolution
- Not Recommended for Rotary Vane Vacuum pumps.

Variable Speed Vacuum Pumps

General economic guidelines:

- Minimum operational time for 5 year payback*
- 5 HP Vacuum pump 12 hours or more/day
- 7.5 HP Vacuum pump 8 hours or more/day
- 10 HP Vacuum pump 6.5 hours or more/day
- 15 HP Vacuum pump 5 hours or more/day
- 20 HP and higher 3.5 hours/day
 - * Based on estimated installed cost of equipment and electric cost at \$0.085/kWh

Typically Justified if milking 3 times per day

Ventilation - Box fans

All fans are not created equal


- Efficiency test data > 21 CFM/watt @0.05" SP
- 36" and larger fans
- HE fans ~ 20% higher energy efficiency

Performance data

- BESS Lab (U of IL) www.bess.uiuc.edu/index2.htm
- Air Movement & Control Assoc www.amca.org

HVLS Fans in Freestall barn

High Volume Low Speed Fans (HVLS)

One 24 foot HVLS fans = six 48" high-speed box type stirring fans

Uses 1 -2 HP per HVLS fan versus 6 HP for six high 48" speed fans.

Saves up to 3.3 kWh per hour of operation

Observations:

- Dryer floors
- Reduced bird traffic
- Less flies
- Disadvantage:
 - Expensive / long paybacks

Ventilation System Maintenance

Dirty louvers can decrease fan efficiency by 40%

- Clean and lubricate louvers (use graphite not grease)
- Clean guards and fan blades

Belt slippage - decreased airflow rates up to 30%

- Check and tighten belts every 3 months
- Retrofit existing fans with self tightening devices for belts.

Always use Totally Enclosed motors

Required by electrical codes for farm use.

Clean dirt off Thermostats

Clean dirt off motor – for motor cooling

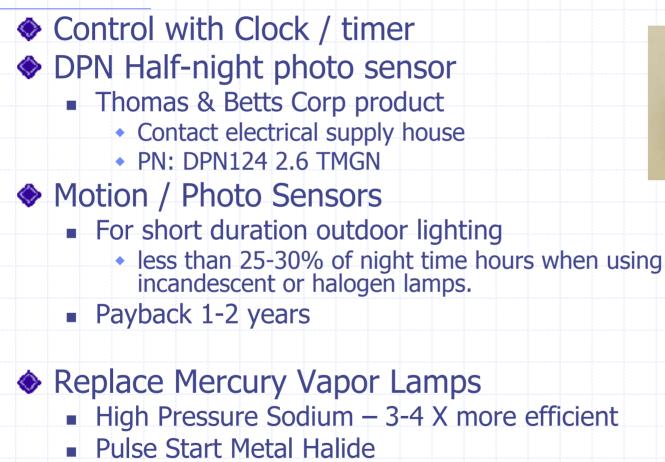
Clean air inlets

Clean brush, limbs, weeds away from fan openings₂₁

Lighting

High-efficiency lighting

- Compact Fluorescent Lamps (CFL)
 - Cold starting to 0°F
 - Direct replacement for Incandescent bulbs
- T-8 Fluorescent (1" diameter)
 - cold starting to 0°F
 - No Flicker
- High Pressure Sodium highest efficiency
- Pulse Start Metal Halide
 - good color rendering
- Proper fixture types
 - Moisture Resistant Rated for dairy barns



Comparison of Lamp Types

Lamp type	Lumens/watt	Average life (hrs)	Color	CRI	CCT (K)	Starting Temp. (F)	Instant On	Wattage range
Incandescent	7-20	1000	White	100	2800	>- 40°F	Yes	25-200
Halogen	12-21	2-6000	White	100	3000	>- 40°F	Yes	45-500
Mercury Vapor	26-39	24,000	Bluish	15-50	3800- 5700	-22°F	No *	50-1000
Compact Fluorescent	45-55	6000 to 10,000	White	82	2700	32°F or 0°F	Yes *	14-29
T-12 HO Fluorescent	30-70	9000 – 12,000	White	52-90	3000 – 5000	-20°F	Yes	25-110
Metal Halide	41-79	10,000 - 20,000	Bluish	65-70	3000- 4300	-22°F	No *	150 -1000
Pulse Start Metal Halide	60-74	15,000 - 32,000	Bluish	62-75	3200- 4000	-40°F	No *	100 - 750
T-12 (1.5") Fluorescent	62-80	9000 to 12,000	White	52-90	3000- 5000	50°F	Yes	30-75
T-8 HO Fluorescent	81	18,000	White	75	3000- 5000	-20°F	Yes	86
High Pressure Sodium	66-97	24,000	Yellow- orange	22-70	1900- 2100	-40°F	No *	35-1000
T-8 (1.0") Fluorescent	76-100	15,000 - 20,000	White	60-86	3000- 5000	50°F or 0°F	Yes	25-59

* Requires warm-up to reach full output

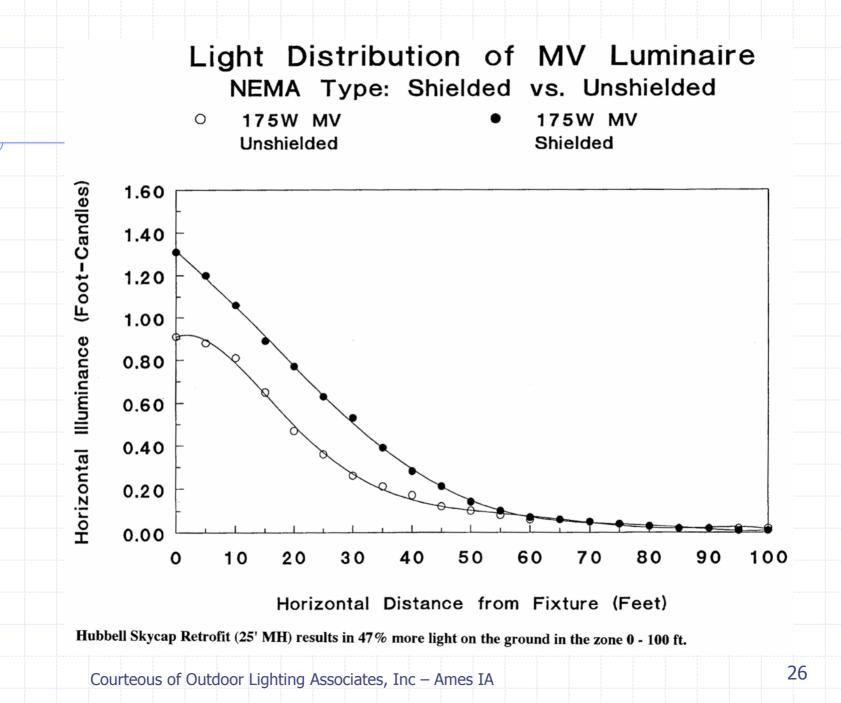
Lighting Controls – Is lighting required all night?

2X efficient, good color rendering

Full Cut-off Reflectors

More light in target area

- Lower wattage needs


- 47% more light on ground

Standard HID Fixture with Refractor

Hubbell SkyCap or GE Skyguard

Livestock Waterers
Electrical Safety!!!!
And Energy Savings

Frost-Free Livestock Water Fountains

Save \$60 to \$100/yr Plus

- Poorly maintained waterer can use \$200+ in electricity/yr
- May not be suitable for low numbers of animals
 Check manufacturers recommendations
 - May require a low wattage heater
- Requires daily maintenance during sub-zero temperatures
 - Check that covers / balls are not frozen open or closed

Energy Conservation

in Agriculture Publications

Available from UW Extension Publications http://cecommerce.uwex.edu/

Contact Information

Scott Sanford Sr. Outreach Specialist Focus on Energy / Rural Energy Issues Biological Systems Engineering University of Wisconsin – Madison 608-262-5062 sasanford@wisc.edu

Wisconsin Energy Efficiency and Renewable Energy www.uwex.edu/energy