Roadblocks to Adopting Energy Efficient Practices for Environmental Control of Livestock and Poultry Facilities

Kevin Janni, Ph.D. Professor and Head

Biosystems and Agricultural Engineering University of Minnesota

Knowledge is Power

Discover

Develop

Use

Disseminate

Systems approach Behavior based on knowledge Components Interactive processes Boundaries Inputs & outputs Environment

Environmental control by mechanical ventilation

Purpose of ventilation

- 1. Exchange air
- 2. Maintain appropriate environment
- 3. Uniform conditions
- 4. Economical
- 5. Year-round

Ideal ventilating process Outside air enters Mixes Picks up heat, moisture, airborne contaminants Moist heated air is exhausted

Ventilating systems affect:

- Air temperature
- Moisture level
- Air temperature uniformity
- Air speed across animals
- Airborne dust & disease organism levels
- Odor & gas concentrations
- Combustion fumes from unvented heaters
- Moisture condensation on surfaces

Roadblocks to adopting energy efficient practices

Small energy costs relative to total production costs

	Energy cost as percent total production
Dairy	2.5 %
Farrow to wean	3.3 %
Wean to finish	1.4 %

FINBIN 2004, University of Minnesota

Feed versus Fuel

- Feed consumption depends on temperature.
- With more environmental control, feed consumption better controlled.

Energy use is rarely measured

You can't manage what you can't measure

Environmental control is complex

System elements interact

Environmental conditions impact animal

- Health
- Well-being
- Production
- ReproductionBehavior

Air temperature Species Age Target growth rate

Temperature zones

	Nominal loss	Optimum
Calf	7 to 27 C	12 to 25 C
Cow	0 to 25 C	5 to 15 C
Nursery pig	25 to 27 C	22 to 30 C
Pig (100 kg)	10 to 20 C	15 to 17 C

Hahn, 1985

Moisture Moisture control is critical in animal facilities Relative humidity 50 to 70% Minimal condensation Air temperature and moisture interactions are complex.

Appropriate environment

Air Quality Gases & Particulate matter Air speed = drafts Minimal in cold weather Mixing in warm weather Uniform conditions Economical

Year-round Winter - cold weather Summer - hot weather Mild weather Wet weather

Negative-pressure ventilating system Exhaust fans Air inlets Controls Heaters Evaporative cooling

New facilities are lumpy purchases

New practices must

- Work effectively
- Be reliable
- Minimally impact management practices
- Be economical

Show me!

Independent researchIn the field

Progress

- Integrated programmable controllers
- More sensors & computers
- Fan performance & efficiency data
- Vacuum pump variable speed drivesLighting

Challenges Tighter environmental control Tighter tolerances More sensor inputs Skilled people Air emissions control

Skilled people Large operations Specialized employees Invest in technology Small producers Consider consultants or service contracts

Energy conservation for environmental control of livestock and poultry facilities

Is important but . . .

- Part of a ventilating system
- Occasional investment
- Must be effective, reliable, & economical

Roadblocks to Adopting Energy Efficient Practices for Environmental Control of Livestock and Poultry Facilities Kevin Janni, Ph.D. Professor and Head

Biosystems and Agricultural Engineering University of Minnesota www.bae.umn.edu