Energy Efficient Grain Drying

Shawn Shouse ISU Extension Ag Engineer 712-769-2600 sshouse@iastate.edu

IOWA STATE UNIVERSITY

University Extension

Basic Facts:

- Grain drying occurs when water is evaporated from the grain through the addition of heat energy.
- With some variation by temperature, it takes about 1000 Btu (British Thermal Units) to evaporate one pound of water.
- Air flow serves to carry this evaporated moisture away from the grain.
- There are no known methods to bypass the previous facts.

Field Drydown:

- Requires no "out of pocket" costs.
- Under normal Iowa fall conditions, corn loses about 0.5 to 1.0 percent moisture content per day.
- Balancing costs are associated with timeliness and increasing field losses.
- Pre-harvest field losses average 2 Bu/A but are rarely "average".

Field Drydown:

- Plan for adequate number of harvest days.
- Scout fields for stalk health and harvest damaged fields first.
- Pay close attention to machine settings and harvest conditions.

Post-harvest Drying Energy Use:

Dryer typeBtNatural airLow temperatureBatch in binHigh temperatureHigh temperaturewith air recirculating

Btu/lb. water removed 1000 – 1200 1200 – 1500 1500 – 2000 2000 – 3000

1800 – 2200

Source: NDSU Extension Grain Drying bulletin

Post-harvest Drying Energy Use:

High temp: 0.018 gal. LP/bushel/point range 0.010 – 0.025 Natural air: 0.33 kWh/bushel/point range 0.30 – 0.40

Natural Air Drying:

- Low energy input, high energy efficiency
- Low drying rate (a month or more/bin)
- Performance depends heavily on weather
- Probability of success in the upper Midwest decreases significantly with grain moisture over 22 percent.

Natural Air Drying:

- Plan for success (equipment and management)
- Airflow is critical
 - Keep grain and floor clean
 - 1.25 to 1.5 cfm/bu minimum for Iowa
- Have a back-up plan
 - Move to dry
 - Spring drying with natural air
 - Feed

Heated Air Drying:

energy/100 bushel/10 pts. removal

<u>System</u>	gal LP	kWh
High speed, high T,		
cool in the dryer	20.0	10
Batch in bin with stir	18.0	10
High T, cool in storage	17.5	8
Continuous flow bin	17.0	10
Dryeration	14.5	7
Combination Drying	0.8	70
Natural air	0.0	140

Source: National Corn Handbook, NCH-14

Heated Air Drying:		
<u>System</u>	Drying speed	
High speed, high T,		
cool in the dryer	1	
Batch in bin with stir	<1	
High T, cool in storage	1.35	
Continuous flow bin	1	
Dryeration	1.6	
Combination Drying	3	
Natural air	4 weeks	

Source: National Corn Handbook, NCH-14

Heated Air Drying:

- Plan for success (equipment and management)
- Match wet storage to harvest and drying rate
- Transfer grain hot and delay cooling
 - 1-2 pts additional moisture removal
 - 25% energy reduction
 - 30-60% higher dryer capacity
- Recirculate cooling and/or drying air
 - 10-30% energy reduction

Heated Air Drying:

- Consider combination high/low temperature drying
 - 50% energy reduction
 - 300% dryer capacity increase
- Use automated moisture sensing
- Check moisture meters and equipment often