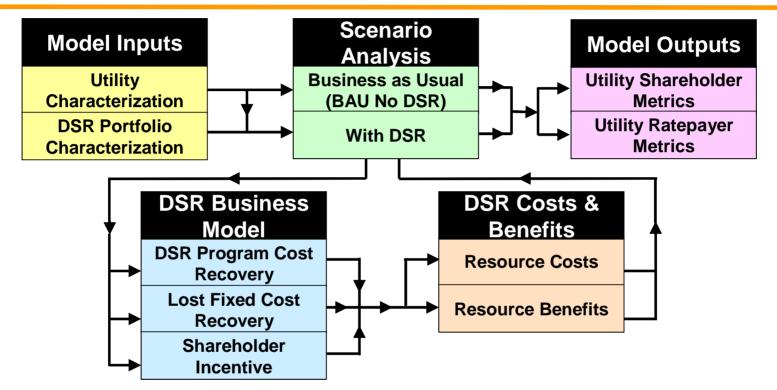
Financial Implications of using Energy Efficiency to contribute towards meeting a Federal RES: Case Study of Kansas

Peter Cappers Charles Goldman Lawrence Berkeley National Laboratory

ACEEE 5th National Conference on Energy Efficiency as a Resource Chicago, IL September 28, 2009

This work was supported by the Office of Electricity Delivery and Energy Reliability of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

rrrr


Presentation Outline

Objective: This analysis seeks to quantify the financial implications when different sized EE portfolios under alternative business models are allowed to serve as a resource in meeting a federal RES requirement using a case study approach (Kansas)

- Analysis methodology
- Federal RES Requirements
- Utility and EE Portfolio characterization
- Financial implications of EE as a resource
- Conclusions

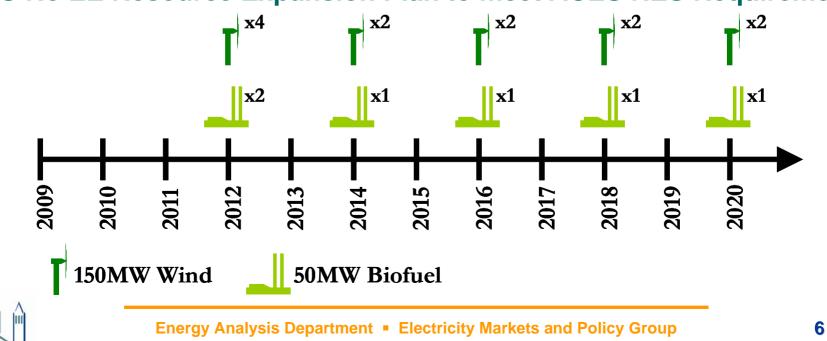
Basic Analysis Framework – Overview

- Utilized a pro-forma financial spreadsheet model originally developed as part of the National Action Plan for Energy Efficiency (NAPEE) but expanded by LBNL
 - Model has ability to illustrate impacts on stakeholders under variety of different DSR portfolios and/or business models

American Clean Energy and Security Act (Passed House in June 2009)

- Includes Renewable Electricity Standard (RES)
 - Specifies fraction of annual actual retail sales that must be met with "renewable" resources
 - Compliance percentage ramps up from 6% in 2012 to 20% in 2020 and beyond
- Treatment of Energy Efficiency in RES
 - EE able to serve as a resource to meet up to 25% of RES obligation
 - EE reduces annual actual sales which forms the basis for the RES obligation

Utility Characterization: Building the Kansas "Super-Utility"


- Collected FERC Form 1 data for three largest IOUs
 - Kansas Gas and Electric
 - Westar Energy
 - Kansas City Power and Light
- Utilized ~15 years worth of historical sales and cost data to inform likely relationship between future sales growth and cost growth
- Combined cost categories (e.g., Non-fuel O&M, T&D CapEx) and growth rates from each of the three utilities to construct a single "super-utility"

Federal RES Compliance: Build vs. Buy

	Expansion Priority	Facility Size (MW)	Capacity Factor	Levelized Build Cost (\$/MWh)	Levelized PPA Cost (\$/MWh)
Wind Resources	Primary	150 MW	38%	48	43
Biofuel Resources	Secondary	50 MW	85%	96	92

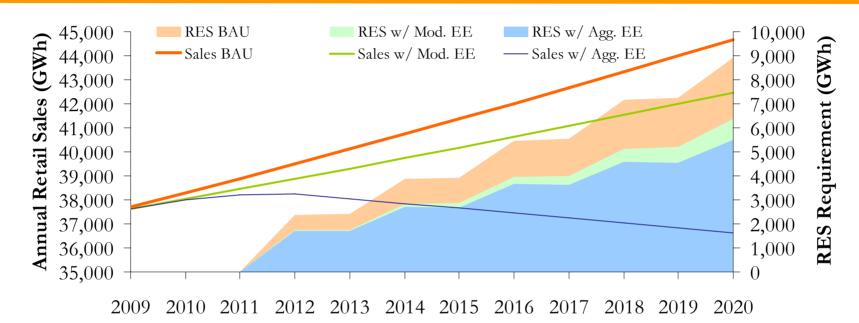
BAU No EE Resource Expansion Plan to meet ACES RES Requirement

,,,,,,

BAU No EE Financial Metrics (2009 – 2020)

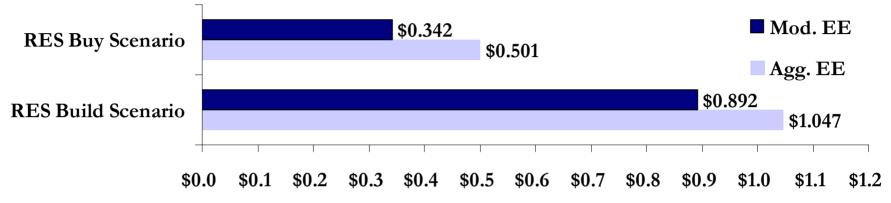
	Build RES Scenario	Buy RES Scenario	Difference
Avg. Retail Rates (¢/kWh)	8.92	7.80	1.12
Collected Revenue (\$B, PV)	\$24.16	\$23.27	\$0.89
Achieved After-Tax Earnings (\$B, PV)	\$2.93	\$2.45	\$0.48
Achieved After-Tax ROE (Avg.)	10.39%	10.34%	0.05%

- If utility chooses to sign PPAs rather than build its own "green" power plants:
 - Ratepayers are much better off, saving \$~890M while retail rates drop on average by over 1 ¢/kWh
 - Utility shareholders are worse off, losing ~\$480M in earnings and seeing avg. ROE drop by 5 basis points


Energy Efficiency Portfolio: Costs and Savings (2009 – 2020)

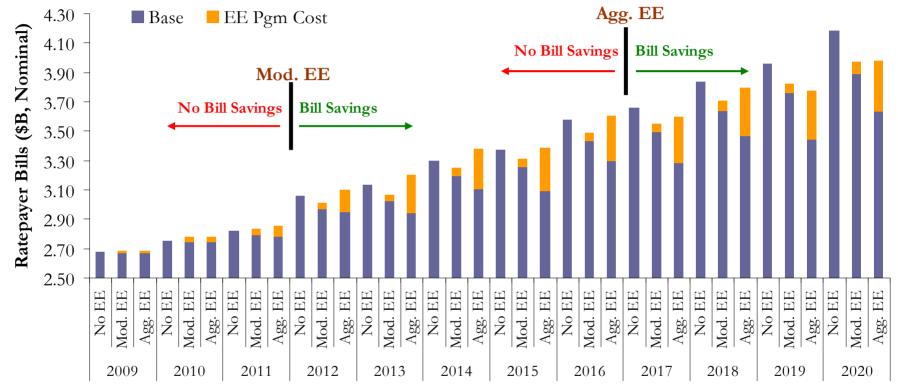
	Lifetime	Lifetime Pk.	Total	Utility	Total	Net	
	Energy	Demand	Resource	Program	Resource	Resource	Benefit
	Savings	Savings	Benefits	Costs	Costs	Benefits	Cost
	(GWh)	(MW)	(\$M, PV)	(\$M, PV)	(\$M, PV)	(\$M, PV)	Ratio
-	(1)	(2)	(3)	(4)	(5)	(6) = (3) - (5)	(7) = (3)/(5)
Mod. EE	27,184	535	\$744	\$345	\$554	\$191	1.34
Agg. EE	105,409	2,019	\$2,701	\$1,481	\$2,169	\$532	1.25

- Modeled two alternative EE portfolios for Kansas "superutility" to help meet 2012 federal RES requirement
- Moderate EE portfolio: Meets maximum contribution of EE towards RES at levelized TRC of ~3.3 ¢/lifetime kWh
- Aggressive EE portfolio: Completely offsets incremental load growth starting in 2012 at levelized TRC of ~3.6 ¢/lifetime kWh


RES Requirement w/ EE as a Resource

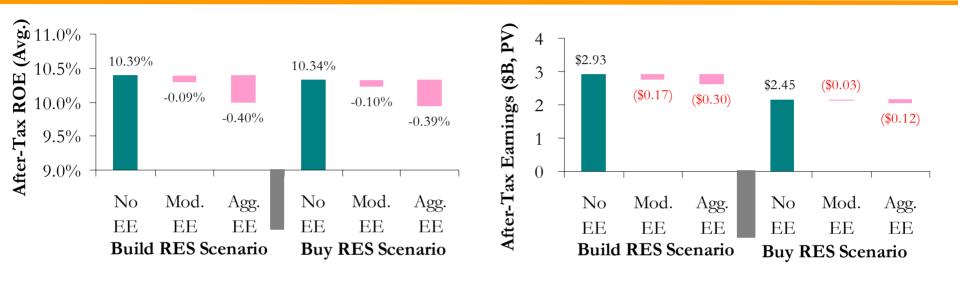
- RES requirement represents energy that must be served by non-EE renewable resources (see right axis)
- Impact of EE on RES requirement is substantial, but incremental reduction in RES requirement of going from Mod. to Agg. savings level is more limited

Impact of EE as a Resource in Cost to Comply with Federal RES (2009 – 2020)



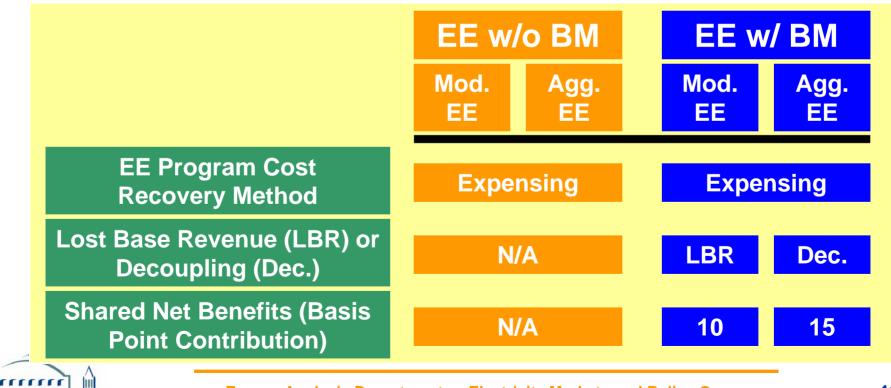
Cost Savings in Purchased Power or Capital Expenditure Budget (\$B, PV)

- If utility pursues a "Buy" strategy, EE can save between \$340-\$500M in PPA costs
- Alternatively, if utility chooses to build its own "Green" power plants under cost-of-service regulation, EE reduces capital expenditures by \$892M - \$1.05B


Ratepayer Bill Savings from EE: Timing Issues (Build RES Scenario)

- It takes time for the accumulated benefits of EE (e.g. bill savings) to take effect and exceed the annual EE program expenditures
- Consumers start seeing aggregate bill savings in 2012 for Mod. EE and in 2017 for Agg. EE

Impact of EE on Shareholders' Financial Interests (2009 – 2020)



- The bigger the savings from EE the bigger the reduction in utility ROE and earnings
- RES compliance method has basically no impact on the change in ROE associated with identical sized EE portfolios, not so with respect to utility earnings

EE Business Model Considerations

- Incentives for Kansas super-utility to strategically pursue these levels of EE are not well aligned with ratepayer interests
- To achieve these levels of savings, the utility may need a comprehensive business model (BM) that differs by savings level

Energy Analysis Department

Electricity Markets and Policy Group

Impact of EE Business Model on Financial Metrics: Ratepayer Perspective

Cha	ge in Financial Metric	
~	DATING DD O	

from BAU No EE Case	Build RES Scenario				Buy RES Scenario			
	Mod. EE		Agg. EE		Mod. EE		Agg. EE	
	w/o BM	w/ BM	w/o BM	w/ BM	w/o BM	w/ BM	w/o BM	w/ BM
Δ Avg. Retail Rates (¢/kWh)	0.06	0.08	0.78	0.89	0.14	0.16	0.85	0.94
Δ Collected Revenue (\$M, PV)	(\$401)	(\$347)	\$13	\$278	(\$165)	(\$116)	\$282	\$521

BM = Business Model

- EE business model adds ~\$50M in costs under Mod. EE and ~\$150M under Agg. EE in total from 2009 - 2020
- Business model increases all-in average retail rates minimally; 0.2 mills/kWh for Mod. EE and ~1 mill/kWh for Agg. EE

Impact of EE Business Model on Financial Metrics: Shareholder Perspective

Change in Financial Metric								
from BAU No EE Case	Build RES Scenario				Buy RES Scenario			
_	Mod. EE		Agg. EE		Mod. EE		Agg. EE	
_	w/o BM	w/ BM	w/o BM	w/ BM	w/o BM	w/ BM	w/o BM	w/ BM
Δ Achieved Earnings (\$M, PV)	(\$167)	(\$135)	(\$297)	(\$138)	(\$33)	(\$4)	(\$123)	\$21
Δ Achieved ROE (Avg.)	(9)	3	(40)	21	(40)	3	(39)	23

BM = Business Model

- ROE exceeds BAU No EE scenario in all cases when EE implemented with a business model, but reduced if no business model is provided
- Even with EE business model, utility is unable to fully reach its BAU No EE earnings except under Buy scenario

Conclusions

- EE can serve as a cost-effective resource in reducing federal RES compliance costs regardless of compliance method (build vs. buy)
- If size of EE portfolio exceeds allowable levels as a RES resource, annual RES compliance level is reduced at best by 2 MWh for every 10 MWh of EE savings
- It takes time for ratepayers, as a whole, to start seeing bill reductions from EE: in 2012 for Mod. EE and in 2017 under Agg. EE portfolio under RES Build Scenario
- Implementing "business model" as part of EE, can make utility indifferent if not prefer EE from an ROE standpoint but not always from an earnings standpoint

