2009 ACEEE 5TH NATIONAL CONFERENCE ON ENERGY EFFICIENCY AS A RESOURCE ECONOMIC EFFICIENCY POTENTIAL OF NEW AND EXISTING BUILDINGS

Rocky Mountain Institute

Kendra Tupper Kitty Wang September 29, 2009

A low carbon electric system is needed, and is feasible

• Eliminate electric system contribution to climate change

Benefits

- Central to "New Energy Economy" based on renewable resources
- Create jobs in areas ranging from efficiency retrofits to high tech
- Increased power system reliability and reduced risk of disruptions

Energy efficiency is the keystone resource of the low-carbon utility

Our research in the past year shows that it is economic to flatten load growth even in the reference efficiency scenario

In deriving these results we took a bottom-up, integrated system approach

New Residential Methodology

New Commercial Methodology

Electricity Consumption by Building Type

Existing Building Methodology

Economic Efficiency Potential: Residential

Economic Efficiency Potential: New Commercial

Economic Efficiency Potential: Existing Commercial

Economic Efficiency Potential: Industrial

%

%

The Next Generation Initiative takes a multi-dimensional approach to developing vision for a low carbon utility system

Studies Leave a Gap Though there are many "visions" of future electric system, they do not fully include all available types of low carbon resources. Few if any of them connects all of the required elements of a vision through a dynamic model that provides the additional detail needed establishing credibility among utilities

*Table represents a small sample of studies reviewed

Efficiency potential and results of other concurrent research are modeled and applied to real utility operations

Next Steps

Questions? ktupper@rmi.org kwang@rmi.org

Appendix: Comparison of recent studies evaluating energy efficiency economic potential

*ACEEE study based on meta-evaluation of existing state and regional studies

Appendix: Comparison of recent studies evaluating energy efficiency economic potential

Study	Economic Potential	Baseline
RMI	35.7% by 2030	Linear extrapolation of past 18 years of consumption out to 2030
EPRI	13.8% by 2030	AEO 2008
McKinsey	26% by 2020	AEO 2008
ACEEE meta-evaluation	24% by 2030	Varies by study

Appendix: Climate Zone Variation for New Commercial

Appendix: Whole Systems Design for New Residential

- Architectural design optimized for daylighting and passive solar control/passive heating in the winter
 - Floorplate oriented with long axis along East-West axis
 - Overhangs for shading during the cooling loads
 - Highly insulating roof, walls, slab, doors and windows
 - High performance windows with a high LSG ratio
 - Reflective roof and exterior walls (in cooling dominated climates)
 - Tight construction to minimize infiltration
- CFLs for 90% of the interior lighting
- EnergyStar appliances and plug loads
- Reduction in standby power losses from plus loads
- Efficient space cooling solution (varies by climate)
 - Natural Ventilation (Temperate and Cold & Dry Climates)
 - Direct/Indirect evap cooling (Hot & Dry Climate)
 - Most efficient commercially available AC unit (Hot & Humid + Cold & Humid Climates)

Appendix: Efficiency Measures for Existing Residential

Measure	Description
CFLs	Replace 100W incandescents with 23 W CFLs
New refrigerator	Replace existing fridge with new unit
DHW improvements	Tank blanket, pipe insulation, lower set point
Replace HVAC (cooling)	Upgrade central unit EER from 10 to 16.8
Replace window/wall AC	Upgrade EER from 8.85 to 12
Replace HVAC (heating)*	Install heat pump (COP = 3.15) instead of electric resistance heating (COP = 1)
Real-time energy monitoring	Install device displaying real-time energy use
Efficient plug loads	Replace appliances with most efficient options
Reflective roof coating	Apply coating in hot climates when reroofing
Weatherization	Various measures to reduce infiltration
Programmable Thermostats	Expanded heating/cooling setpoints during unoccupied periods
Smart power strips	Reduce standby power losses in plug loads

Appendix: Efficiency Measures for Existing Commercial

Measure	Description
Lighting	Replace T12s with third generation T8s
Efficient Fans	Replace fans with efficient, variable speed fans
Efficient pumps	Replace pumps with efficient, variable speed pumps
Upgrade cooling system	Upgrade to most efficient commercial cooling system (air cooled DX or central chilled water)
Retro-commissioning	Improve overall building operations
Efficient office & cooking equipment	Offices: Replace monitors, hard drives, printers, copiers, etc. Restaurants: Upgrade refrigeration and cooking equipment
Improved HVAC controls	Still in progress
Smart power strips	Reduce standby losses
Repaired duct leakage	Seal air leakage in existing ductwork
Maintenance	Implement regular HVAC and lighting maintenance programs
Improved refrigeration	Applicable to supermarkets and food service

Appendix: Change in Consumption for US Industrial Sectors (2002-2007)

Appendix: Industrial Savings by Measure

Measure	GWh Savings (2030)	Maaqura	CMb Solvings (2020)
Advanced forming/near net shape technology	75	Air Compressor Systems Advanced	512
Advanced Curing Technologies	1,510		1 120
liquid mebrane technologies-chemicals	3,622		4,130
gas membrane technologies-chemicals	70		22,000
Advanced lubricants	3.430	Efficient lighting design Office	4,462
E-beam sterilization	160	Efficient lighting design Manuf	10,884
membrane technology wastewater	0	Advanced meter design Warehouse	8,720
Efficient refrigeration systems	887		23,175
Compressed air system management	10.811	Fan system efficiency	3,774
Motor system optimization	2.871		45,482
electric supply system improvements	26.443		407
Sensors and controls	2.800		26,596
	_,	Energy Information Systems	19,516

List of Cost-effective measures only

Appendix: Sources

- 1. 2005 ASHRAE Handbook of Fundamentals. ASHRAE 2005. p. 27.15.
- 2. 2007 Buildings Energy Data Book: http://buildingsdatabook.eren.doe.gov/>.
- 3. Directory of Certified Product Performance: Air-Conditioning, Heating, and Refrigeration Institute: http://www.ahridirectory.org/>.
- 4. U.S. Lighting Market Characterization: Volume I: National Lighting Inventory and Energy Consumption Estimate (2002). Prepared by Navigant Consulting, Inc. Retrieved 10 September 2008 from: http://www.netl.doe.gov/ssl/PDFs/lmc_vol1_final.pdf>.
- 5. RECS, CBECS and MECS data from EIA.
- 6. Energy Star (2008). U.S. Department of Energy and U.S. Environmental Protection Agency. Retrieved 8 September 2008 from: http://www.energystar.gov.
- Natural Gas Combined-cycle Gas Turbine Power Plants. Northwest Power Planning Council. 8 August 2002. Retrieved 3 July 2008 from: http://www.westgov.org/wieb/electric/Transmission%20Protocol/SSG-WI/pnw_5pp_02.pdf.
- "NGCC Plant." Cost and Performance Baseline for Fossil Energy Plants Desk Reference, National Energy Technology Laboratory (NETL). May 2007. Retrieved 3 July 2008 from: http://www.netl.doe.gov/energyanalyses/pubs/deskreference/B_NGCC_FClass_051607.pdf>.
- David, J. and H. Herzog. "The Cost of Carbon Capture." Massachusetts Institute of Technology (MIT). Retrieved 3 July 2008 from: http://sequestration.mit.edu/pdf/David_and_Herzog.pdf>.
- 10. RS Means CostWorks. Retrieved from: <http://www.meanscostworks.com/>.
- 11. DEER 2004-05, Version 1.0. Retrieved 17 September from: ">http://www.energy.ca.gov/deer/>.

Appendix: Sources

- 1. USGBC LEED Case Studies
- 2. EIA 2006 Manufacturing Energy Consumption Survey
- 3. EIA. Annual Energy Outlook 2007, 2009.
- 4. ACEEE end-use breakdown data found in Table 5.3.3.01 of NYSERDA (2003). "Energy Efficiency and Renewable Energy Resource Development in New York State."
- 5. ACEEE measure data sent through correspondence with Skip Laitner and Dan Trombley, ACEEE. Measure list employed in ACEEE (2009). Potential for Energy Efficiency, Demand Response and Onsite Solar Energy in Pennsylvania. Washington, DC.