

Creating the new energy economy

Wiring the Smart Grid for Energy Savings

New Markets, Players, and Opportunities for Energy Efficient Resources

Phil Welker Executive Director, PECI

Agenda

What is the smart grid?

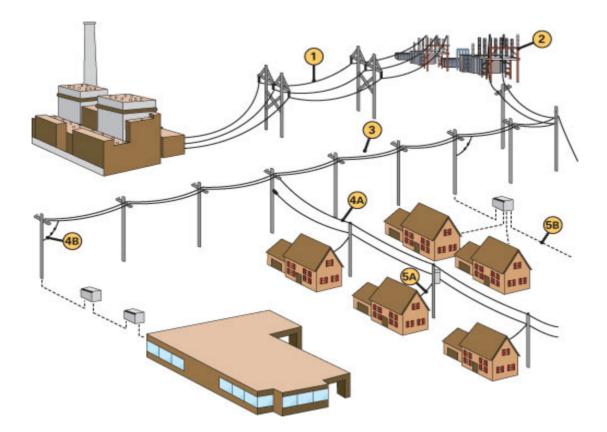
What problems are we trying to solve with the smart grid?

How could the smart grid help save energy?

Unresolved challenges

Smart Grid 101: The IT boom for the electric grid

P E C


"the overlaying of a unified communications and control system on the existing power delivery infrastructure to provide the <u>right</u> <u>information</u> to the <u>right entity</u> (e.g. end-use devices, T&D system controls, customers, etc.) at the <u>right time</u> to take the <u>right action</u>."

- EPRI, The Green Grid

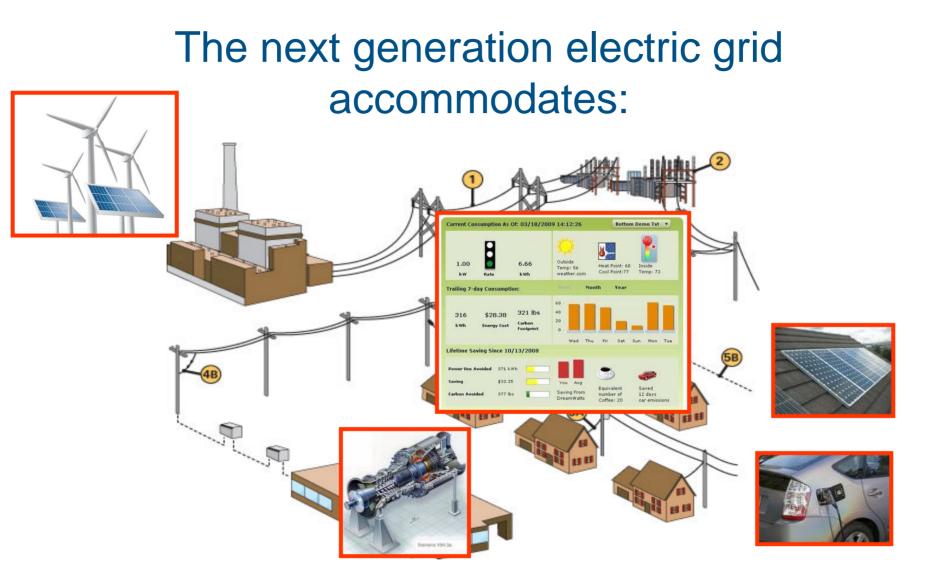
The electric grid

P E C I

Source: DTE Energy (http://my.dteenergy.com/products/electricity/images/electricFlow.jpg)

What are the problems with the old grid?

Grid needs to be updated


- Built for central station generation
- Blackouts, reliability, aging grid
- T & D bottlenecks, siting/building new lines

Demand is rising

- Peak load growth & costly new generation
- Lack of widespread demand response
- Customers don't see real prices

Need for new supply resources

- Difficulty in integrating variable generation sources (renewables)
- Difficulty in integrating widespread distributed generation

Source: DTE Energy (http://my.dteenergy.com/products/electricity/images/electricFlow.jpg)

P E C I

Applications that will use Smart Grid infrastructure

P E C I

Generation

- Central plant renewables
- Distributed generation/cogen
- Power quality for digital economy

Transmission & distribution

- Distribution automation/load balancing
- Self-healing grid operations
- Remote disconnect, meter reading

Electric loads

- Demand response
- Energy conservation
- Storage options

Smart Grid enabling infrastructure

Intelligent devices

- Smart meters (part of Advanced Metering Infrastructure)
- Sensors
- Grid-aware equipment

2-way communications (interoperable)

- Networking technology
- Communication pathways like cable, Wi-Fi, powerline

Advanced control and data management systems

• Automated decision-making on supply and demand side

P E C I

• Meter data management systems

"The Electricity Economy: New Opportunities from the Transformation of the Electric Power Sector", Global Environment Fund and Global Smart Energy - 2009

Smart Grid enabling infrastructure

Smart Grid is not the end, it's the means to the end

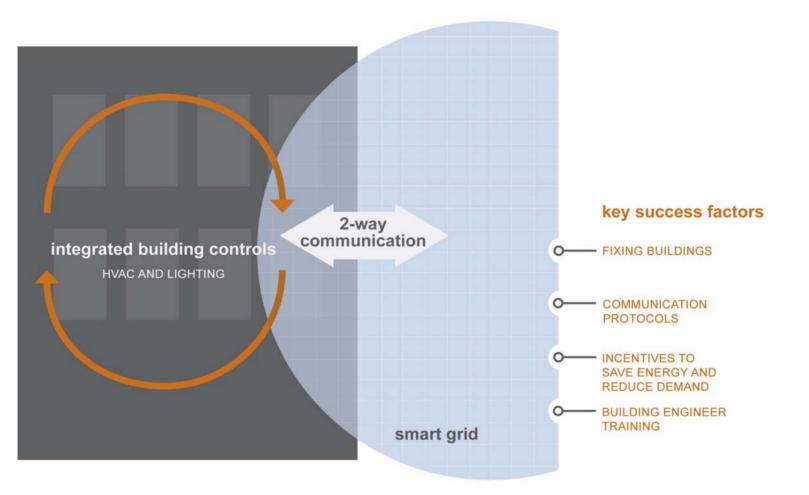
It's what we DO with a smarter grid that matters

• Installing monitoring equipment alone doesn't save energy

The Smart Grid requires controllable buildings

Does it make sense to use Smart Grid technology to communicate with buildings that aren't controllable?

- Buildings need to work to participate in DR programs
- Implement Cx with DR programs
- DR signals lead to predictable responses

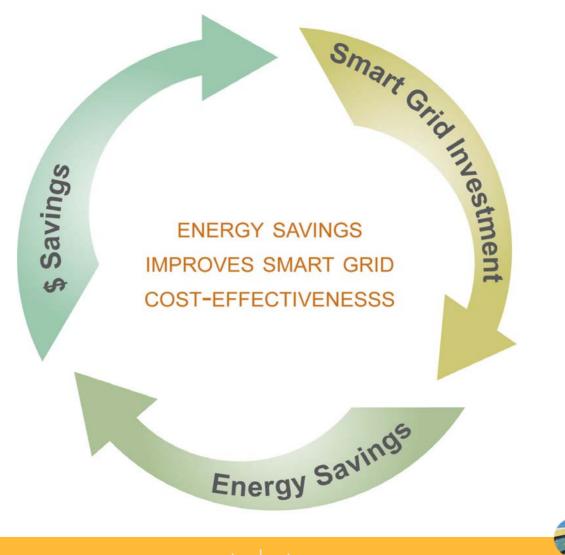

Interoperability is key

Control systems will need to work together seamlessly

- Integration of different control systems
- Integration of cogeneration and other DG into buildings and with the grid

Building system integration with the Smart Grid

P E C I


Energy savings through the Smart Grid

P E C I

Improved energy efficiency and conservation due to:

- Time of use pricing
- Improved energy use information
- Lower utility program admin costs
- Automated diagnostics

Energy savings through the Smart Grid

P E C I

1. Energy savings due to time of use pricing

Peak demand reduction programs achieve some energy savings

- 4% energy savings in early studies
- Either active or automated participation
- Example: Avoiding usage (lighting) vs. load shifting (clothes washer)

P E C I

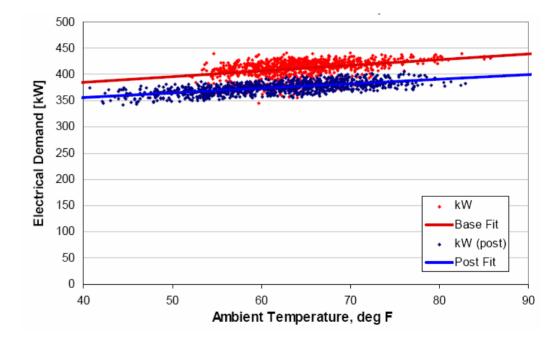
Paying the true cost of power


• Increased awareness/reduced consumption

2. Energy savings due to improved energy use information

Energy savings through active participation and behavior changes

• 11% energy savings in early studies



P E C

3. Utility program cost savings

Better data to assess potential savings in target markets

Use of data for EM&V

Source of graphic: California Commissioning Collaborative, *Guidelines for Verifying Existing Building Commissioning Project* Savings - Using Interval Data Energy Models: IPMVP Options B and C

P E

4. Automated diagnostics

Will utilities start providing diagnostic services?

In electric meter data, we can see these issues:

- Scheduling
- Unoccupied energy use
- Demand peaks
- Correlations of outside temperature and energy use

How far will Smart Grid data systems "see" into end-uses?

A few of many unresolved challenges

What will motivate customers to be active participants with the grid?

- What is the "killer app" to increase motivation?
- What level of technology is needed for which customers?
- How much will improved information lead to changed behavior?
- How will we fix all these buildings and get them ready to interface with Smart Grid infrastructure?
 - Cx industry workforce expansion
 - Automated techniques

Smart Grid Driver: Utility regulatory framework

P E C I

What are good investments for a utility?

EE investments

- Pass through expenses, no rate of return
- Expenses go with rate case period (2-3 years)

Smart Grid investments

- Capital investment, earn rate of return
- Stimulus funding and public support

Summary

Smart Grid is an enabling infrastructure – it's what we do with it that matters

The Smart Grid requires controllable buildings

Interoperability is key – buildings will need to be commissioned to interact with the grid

With focus, the Smart Grid infrastructure can enable energy savings

P E C I

Questions?

P | E | C | I

Creating the new energy economy