

Impacts of Future Codes and Standards on U.S. Electricity Use (2010-2020)

Prepared for ACEEE Energy Efficiency as a Resource

> Presented by Ingrid Rohmund Global Energy Partners, LLC

September 29, 2009

© Global Energy Partners, LLC 2009

Background

- The Institute for Electric Efficiency (IEE) sponsored this research – Lisa Wood, Executive Director
- Objectives
 - Quantify potential impacts of future codes and standards
 - Engage utilities in dialog and iden ways for them to get involved in the regulatory process
- A draft whitepaper: is available on the IEE website:

http://www.edisonfoundation.net/iee/

Electric Efficiency

Global Energy Partners, LLC An Empkywe-Owned Company

U.S. Electricity Use – Past and Future

Assumptions in the Baseline Forecast¹

Existing codes and standards

- Both local and federal building codes (i.e., IECC 2006 and 2009; ASHRAE 90.1 2004 and 2007)
- Appliance and equipment standards officially signed
- Other energy-relevant legislation
- Naturally occurring efficiency
 - Technological improvements
 - Conservation response to rising prices
 - Market trends towards "green"
- Embedded demand-side management
 - Utility information and incentive programs
 - State funding and regulatory mechanisms
 - New funding through the ARRA

¹Source: Annual Energy Outlook 2009 with Provisions of the American Recovery and Reinvestment Act, April 2009

Global Energy Partners, LLC An Employee-Owned Company

Codes and Standards Analyzed

- 1. Compliant No Legislation
 - All states have equivalent of IECC 2009 or ASHRAE
 90.1 2007 building codes
 - Equipment standards for items scheduled or overdue under DOE rulemaking process
- 2. Partially Compliant Legislation
 - Building codes consistent with current version of Waxman-Markey Bill (HR2454, Sec. 201)
 - Equipment standards expand to all possible devices; second standards in later years of the forecast for some technologies
- 3. Compliant Legislation
 - Same as #2 but with 100% compliance

Used LoadMAP[™] to Perform Analysis

Building Code Assumptions

Average Energy Reductions (% of Baseline Usage)

	Compliant - No Legislation	Partially Compliant - Legislation Compliant - Legislation				
	IECC 2009	Waxman-Markey I	Waxman-Markey II			
Year Effective	2010	2010	2014-2015			
Residential Sector	15%	30%	50%			
Commercial Sector	15%	30%	50%			
Industrial Sector	6%	11%	19%			

Equipment Standards Assumptions -Residential CAC Example

Residential Standards Assumptions

Technology	2012	2013	2014	2015	2016	2017	2018	2019	2020
Central AC			SEER 14				SEER 15		
Window AC			EER 10.8				EER 11.5		
Heat Dump									
neatrump				11371 0.2			nor	1 3.5	
Water Heating				EF	0.95			Ht Pur	np WH
Interior Screw in		Δ.	dvanaad Ir	aandasaa	nt			CEI	
Exterior Screw-in		Advanced Incandescent				CFL			
Reflector Lamps		Advanced Incandescent				descent	CFL		
Torchiere		Advanced Incandescent				CFL			
Linear Fluorescent							Super T8		
								•	
Refrigerator		2010 Code					2014 Code		
Freezer		Energy Star							
Clothes Washer	Energy Star								
Clothes Drver	Moisture Sensor (10%) 15% More					e Efficient			
Cooking						13% More Efficient			
Personal Computer							Energy Sta	ar	
Color TV							Energy Sta	ar	
Furnace Fan						Permar	ent Magne	tic Motor	
bal Energy Partners,	LLC			DRAF	T RESU	LTS			

Summary of Impacts in 2020

Scenario	Electricity Use in 2020 (TWb)	Savings from Codes (TWb)	Savings from Standards (TWb)	Total Savings in 2020 (TWb)	% of Baseline
AEO Baseline Forecast	4,117	(1 •••••)		(1 •••••)	Dasenne
Compliant - No Legislation	3,990	49	78	127	3.1%
Partially Compliant - Legislation	3,816	87	214	301	7.3%
Compliant - Legislation	3,750	147	220	367	8.9%

Impact of Codes and Standards

Forecast by Scenario and Sector

Global Energy Partners, LLC

Savings by Scenario and Sector

DRAFT RESULTS

lobal Energy Partners, LLC

An Employee-Owned Company

2020 Savings by End Use

Global Energy Partners, LLC

2020 Savings by Vintage and Sector

Electric Efficiency

An Employee-Owned Company

 By 2020, the analysis suggests that future codes and standards could

Implications

- Reduce electricity use
 by 3-9% of load in 2020
- Offset growth in use since 2008 by **32-92%**
- This will affect savings possible from utility programs by
 - Lowering the baseline sales forecast
 - Raising the "efficiency bar"
- How could/should utilities respond?

Global Energy Partners, LLC

Status and Next steps

- Draft white paper presented at EEI meeting in early September
 Lively discussion about role of utilities
- Draft white paper in circulation
 Numerous thoughtful comments received
 EPA, ACEEE, DOE, NRDC, individual utilities
 Additional comments are welcome
- Assess and incorporate comments in October
- Plan to release final in November 2009

For more information

Ingrid Rohmund Global Energy Partners irohmund@gepllc.com 760.943.1532

Lisa Wood Institute for Electricity Efficiency <u>Iwood@edisonfoundation.net</u>

Draft white paper:

http://www.edisonfoundation.net/iee/

