Incorporating DSM Risks into Resource Planning Processes

Basil Stumborg Enterprise Strategy, Finance BC Hydro

Enterprise Strategy

Opening remarks

- Introductions
 - Myself
 - BC Hydro
- Main takeaways of talk
 - Tools borrowed from Decision Analysis
 - Risk Framework to integrate results
 - Key hurdles
 - Modeling uncertainty (not variability)
 - Modeling flexibility
 - Capturing interrelationships among key variables

BChydro

FOR GENERATIONS

Enterprise Strategy

Agenda

- Some background
 - Regulatory
 - Energy Planning task
- Assessing Uncertainty
- Results and tough tradeoffs
- Summary and conclusions

Background - Energy Planning in BC

- Resource Gap
- Long Term Acquisition Plan
 - To fill the resource gap
 - Drives short term (3-4 yrs) actions

4

Regulatory Framework
 – Plan filed every 2-3 yrs

Background – Energy Planning in BC

- Provincial Government's energy policy
 - At least 50% of BC Hydro's incremental resources through conservation
- Update to legislation (Utilities Commission Act, 44.1)

- Conservation first, then supply side resources

- A large change for BC Hydro's planners:
 - Increase over previous history
 - At the aggressive end in N.A.

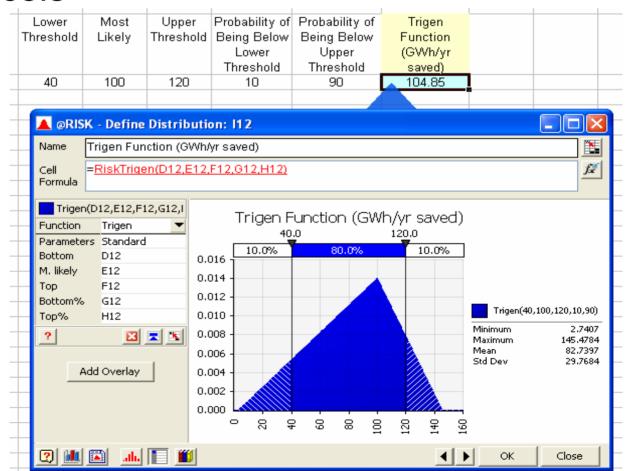
How to capture uncertainty?

Rates	GWh FE (2020)
Residential	802
Commercial	404
Industrial	314
Codes and Standard	S
Building Codes	475
Set top boxes	436
Fan blowers	100
Activities	
Appliances	174
Lighting	148
Windows	140
Total	2993

- Traditional approach
 - Sum up point estimates
 - Feed into resource stack
- But each line item is an uncertain project
- Limited data on delivery risk
 - But subject matter experts to have a "gut feel" for uncertainty

Step 1 – Focus on key drivers of uncertainty

- Savings (via appliance program) varies:
 - As a function of participation
 - And savings per participant


Within Project Relationships				
Name	Sub-components	Est Savings		
Appliances	Participation	174		
	Savings / Participant			
Lighting	Participation	148		
	Savings / Participant			

Step 2 – Eliciting subjective probabilities from experts

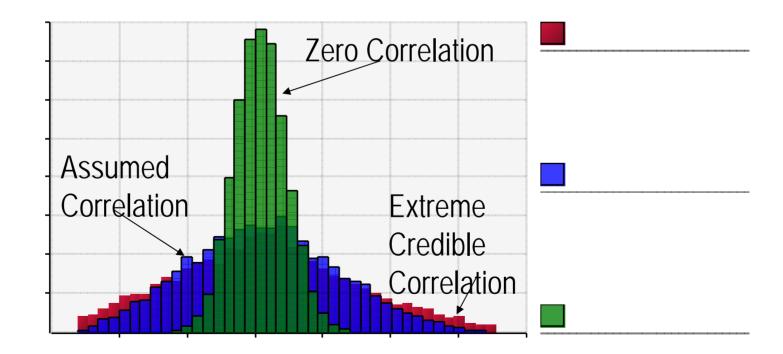
- Interview protocols followed
- "Gut feelings" quantified

Step 3 – Assess relationships across variables

- As an example:
 - Variables within each activity are related
 - Variables across activities are related too
 - A culture of conservation

Within Project Relationships		Between Project Relationships			
Name	Sub-components	Est Savings	Name	Sub-components	Est Savings
Appliance	Participation	174	Appliances	Participation	174
<	Savings / Participar			Savings / Participant	
Lighting	Participation	148	Lightin	Participation >>	148
	Savings / Participant			Savings / Participant	

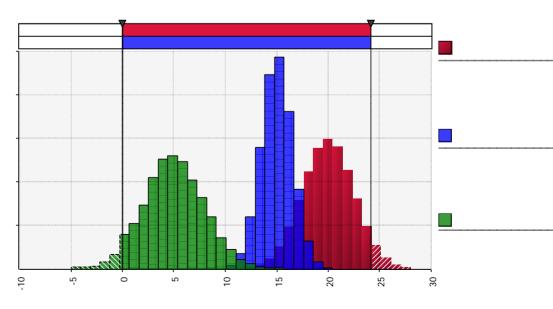
BChudro


How important are these interrelationships?

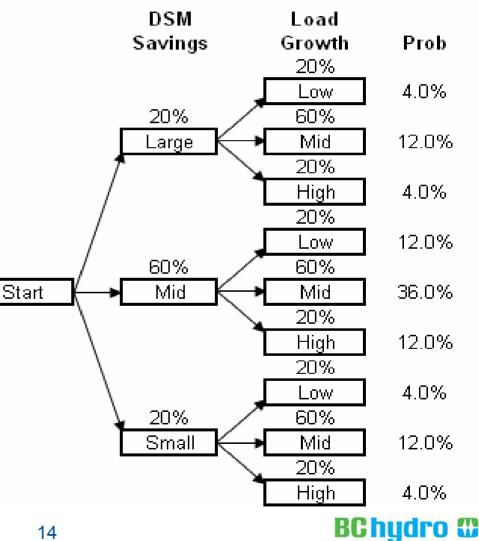
- These effects can be captured:
 - Through functional forms
 - Through correlational estimates
- Neither is easy to do
- As much "art" as "science" to this
- Some discomfort with level of subjectivity here
 - Lack of precision with estimates

How important are these interrelationships?

- Sensitivity Analysis
 - Zero correlation assumption has a strong influence
 - We know that this is the wrong assumption

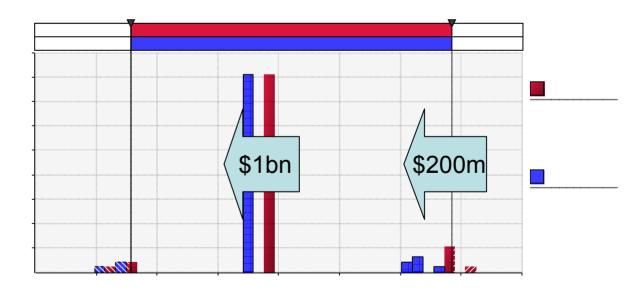

Risk Framework for Integrating Results

- Demand Savings = Resource Gap
- But how do we show this?
 - As continuous variables?
 - Or as discrete outcomes?

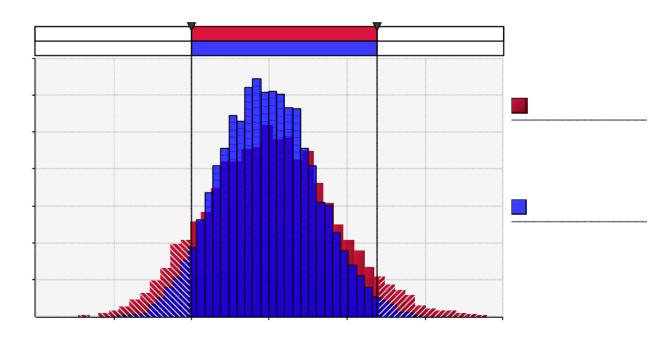

Integrating Continuous Results

- Gap = Load growth DSM
 - Mock data shown below
- Advantages
 - Very easy to do
 - Analysis is very "clean"
- Downside
 - Don't know how to interpret tail events
 - Hampers modeling costs, other impacts

Integrating Discrete Results

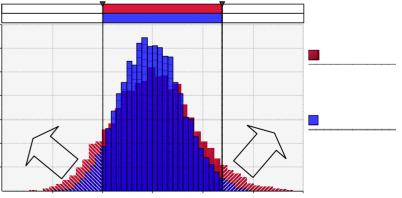

- Gap = Load growth - DSM
- Advantages
 - Easy to explain
 - Easy to interpret "tail" events
- Downside
 - Limits # variables
 - Subjective choices to manage tree size
 - Probabilities harder to interpret

Results - Portfolio Cost and Cost Risk


- Analysis within a larger portfolio showed
 - Increasing DSM reliance reduced costs
 - Increasing DSM reliance reduced costs risks

Enterprise Strategy

Results – Deliverability Risk


- Will these savings materialize
 - Key factor
 - Grows with increased reliance on DSM
 - Shows the probability of being short on energy

Enterprise Strategy

Results – Deliverability Risk

- Some caveats
 - Missing interrelationships:
 - DSM and load growth
 - DSM buckets of Rates, Codes and Standards, Programs
 - Feeling among planners that deliverability risk was understated

Cost Risk vs Deliverability Risk – A key tradeoff

- Previous slides suggest a tradeoff:
 - More DSM reduces cost, cost risk; but
 - Increase deliverability risk
- Tradeoff an artifact of modeling
 - Deliverability shortfalls should show as:
 - Decreased reliability
 - Increased costs
- Problem
 - Variability with perfect foresight ≠ uncertainty
 - Modeling doesn't capture "surprises"

Enterprise Strategy

BChudro

DSM in BC Hydro's 2008 LTAP Submission

- BC Hydro's 2008 LTAP Submission
 - Targeted 10,000 GWh/yr DSM by 2020
 - Represented 78% of total load growth
 - An ambitious amount
 - But not the most ambitious option considered
 - DSM's delivery risk
 - Overshadowed calculated financial benefits of more extensive DSM
 - A key point of debate in regulatory review

BChudro

Lessons Learned

- Risk Framework
 - Worked well to integrate uncertainty into resource planning
 - Drew little interest in regulatory review
- Key element that organized our
 - Thinking
 - Portfolio Modeling
 - Resource choices

Future Challenges

- Capturing Key Linkages:
 - Load growth and DSM savings
 - Relationships among
 - Rates
 - Codes and Standards
 - DSM programs
- Modeling uncertainty (not variability)
- Valuing flexibility

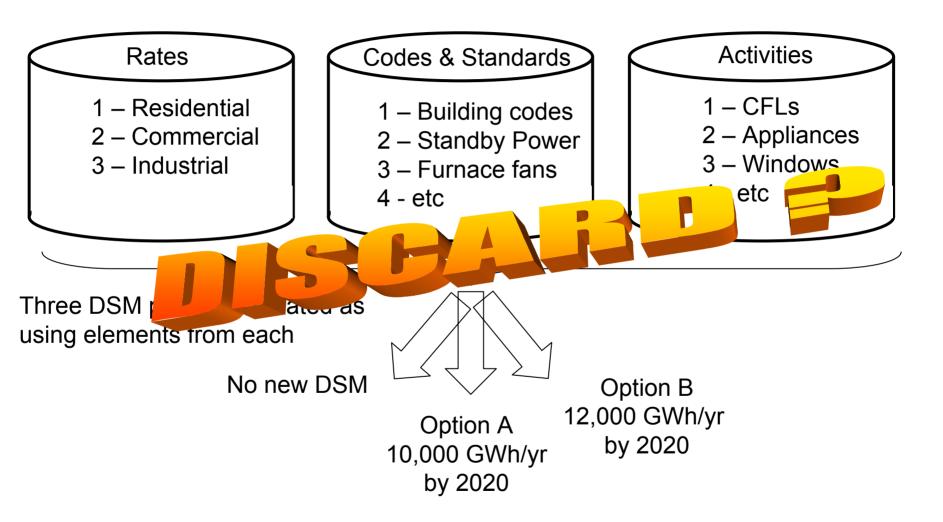
BChudro

Conclusions

- DSM Uncertainty
 - Key question in our regulatory arena
- Requires a different set of tools

 Borrowing from decision analysis field
- Framework to integrate results
- Important work needs to be done

Categorizing our DSM Resources


• Three "buckets" of conservation measures

- But, how to input these into resource planning?
 - Lots of potential combinations
 - These elements are interrelated

BChudro

DSM portfolios as resource options

BChydro