

Recognizing the Full Value of Energy Efficiency

What's Under the Feel-Good Frosting of the World's Most Valuable Layer Cake of Benefits

Presented at the 2013 ACEEE National Conference on Energy Efficiency as a Resource

Jim Lazar RAP Senior Advisor

September 24, 2013

The Regulatory Assistance Project

50 State Street, Suite 3 Montpelier, VT 05602 Phone: 802-223-8199 www.raponline.org

A "Layer Cake" of Benefits from Electric Energy Efficiency

Utility System Benefits

These are most commonly considered by regulators.

Utility System Benefits

- Power Supply
- T&D Capacity
- Environmental
- Losses and reserves
- Risk
- Credit and Collection

BUT:

- Most undervalue emission costs;
- Many exclude or undervalue T&D benefits;
- Most undervalue line losses and reserves;
- Most exclude or undervalue risk benefits.

Utility System Benefits: Emission Costs

Some regulators consider only existing emission costs, not prospective emission costs for power plants.

Power Cost Impacts of Potential Future Emissions Requirements ⁸⁷

Utility System Capacity Benefits: Transmission and Distribution Costs

When the Washington UTC included load shape, the value of residential retrofit weatherization doubled.

Utility System Benefits: Line Losses and Reserves

- Marginal losses are ~ 1.5X average losses;
- On-peak <u>marginal</u> losses can be 3X average losses.

Percent of Maximum System Load

Utility System Benefits: Risk Benefits

"Jaws of Uncertainty" in Electricity Load Forecasting

Note: substantially less uncertainty prevails under the higher efficiency homes scenario.

Energy solutions for a changing world

Participant Benefits

Regulators seldom consider nonelectricity participant benefits; these can be very significant.

- Affects consumer willingness to pay;
- If ignored, many cost-effective measures may be omitted from utility programs.

Participant Benefits: Water, Sewer, Other Resources

Northwest Power and Conservation Council:

Participant Benefits: O&M, Labor Productivity

- Many energy efficiency measures save labor, improve employee productivity, or reduce other maintenance costs;
- Some measures may increase these costs.

Participant Benefits: Health

- New Zealand "Heat Smart" Low-Income Retrofit Program Evaluation:
- 90% of benefits were health-related.

Hospital Admissions for Respiratory Ailments	Down 43%
Days off Work	Down 39%
Days off School	Down 23%

Significant Mortality Benefits: ~18 deaths/year

Societal Benefits

Societal Benefits: Emissions

- Unregulated fine particulates significant;
- Damage costs larger than mitigation costs;
- Weighted average may be appropriate.

Illustrative Mitigation and Damage Costs

Emission Type	Mitigation Cost	Damage Cost
Mercury – lb.	\$33,000	\$181,500
PM 2.5 – ton	\$13,000	\$60,000
CO2 – ton	\$5	\$80

Societal Benefits: Water

Water–Energy Connection is Critical

Power production is the second-largest water user (after irrigation);

Water treatment and pumping, and wastewater treatment are huge users of electricity;

Anything that saves water OR electricity saves **both** water **and** electricity.

Low-Income Programs Are Different WSU Cost-Benefit Analysis, 2011

Energy, Utility, Participant, and Societal Benefits

Present Value	Mid	Low	High
Emissions Benefit	\$380	\$330	_*
Economic Benefit	\$1,310	\$690	\$1,970
Utility Benefit	\$340	\$80	\$680
Participant Benefit	\$2,270	\$920	\$4,660
Total Non-Energy	\$4,300	\$2,020	\$7,310
Energy Benefit	\$4,840	\$3,620	\$5 <i>,</i> 680
Total Benefit	\$9,140	\$5,640	\$12,990
Total Cost	\$6,070	\$6,070	\$6,070
Benefit-Cost Ratio	1.5	0.9	2.1

*the emissions and economic benefit are combined in the high scenario

Benefits Considered in Commonly Used Cost Tests

	Utility (PACT) Cost Test	Total Resource Cost Test	Societal Cost Test
Utility System Benefits	X	X	X
Participant Resource Benefits		Χ?	X
Participant Non- Resource Benefits		?!	Χ
Societal Non- Energy Benefits			X
for a changing world			16

Utility Cost Test (or PACT): Flawed Even When Applied Properly

Can be used to support funding for uneconomic measures (Washington); Can be used to deny funding for economic

Vermont Energy Efficiency Savings Value

Updated Externality and NEB Values, \$/MWh

based upon data from their annual reports and personal communications.

measures (Louisiana).

Total Resource Cost Test: Complex (and seldom applied well)

- Most commonly used (and misused) cost test.
 - All costs, but not all benefits considered;
 - Energy benefits often under-counted;
 - Non-energy benefits often totally ignored.

Societal Cost Test: Challenging For Regulators

Utility regulators are fairly resistant to quantification of non-energy benefits (NEBs); **Utilities** not particularly well-suited to this task either;

Manufacturers, vendors, and installers should have a significant role in NEB justification. Several regulators have adopted **default values** for difficult-to-quantify (DTQ) NEBs and environmental costs, while allowing measure-specific analysis.

The Multiple Benefits of Energy Efficiency 164

Why limit ourselves to only one element of benefits?

A Framework To Move Forward

- Identify all benefits;
- **Quantify** those that are quantifiable;
- **Measures** that pass TRC always go forward;
- **Vendors and manufacturers** have duty to justify DTQ benefit values;
- **Use Judgment**: regulators can establish default values for DTQ benefits;
- **Find funding partners** where cost-effectiveness depends on non-electricity benefits;
- **Programs** must ultimately be cost-effective.

Related RAP Publications

- Energy Efficiency Cost-Effectiveness Screening (2012) www.raponline.org/document/download/id/6149
- US Experience with Efficiency As a Transmission and Distribution System Resource, (2012) <u>www.raponline.org/document/download/id/</u>4765
- Valuing the Contribution of Energy Efficiency to Avoided Marginal Line Losses and Reserves (2011)
 www.raponline.org/document/download/id/4537
- Preparing for EPA Regulations (2011)
 <u>www.raponline.org/document/download/id/919</u>
- Incorporating Environmental Costs in Electric Rates (2011)
 <u>www.raponline.org/document/download/id/4670</u>
- Clean First: Aligning Power Sector Regulation With Environmental and Climate Goals <u>www.raponline.org/document/download/id/12</u>
- Integrating Energy and Environmental Policy (2013)
 <u>www.raponline.org/document/download/id/6352</u>

About RAP

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power and natural gas sectors. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

jlazar@raponline.org

The Regulatory Assistance Project

Beijing, China • Berlin, Germany • Brussels, Belgium • **Montpelier, Vermont USA** • New Delhi, India 50 State Street, Suite 3 • Montpelier, VT 05602 • *phone:* +1 802-223-8199 • *fax:* +1 802-223-8172

www.raponline.org