Integrating Energy Efficiency Geotargeting with Resource Planning in Vermont

Presented at the 2013 ACEEE National Conference on

Energy Efficiency as a Resource

9.24.13

TJ Poor John Plunkett

Overview

- Criteria used to evaluate potential benefits of GT in context of specific reliability constraint
 - Uncertainty associated with the analysis of whether or not it "worked"
- Methodology for determining potential/cost for EE to be part or all of a solution

The St. Albans Constraint (2011)

Best use of Limited Funds?

Societal Test

- Deferral Value
- Avoided Energy/Capacity Costs
- Externalities
- Other in-state T&D Benefits
- 3% Discount Rate

Ratepayer Test

- Deferral Value
- RNS
- Avoided Energy/Capacity Costs
- DRIPE
- Other in-state T&D benefits
- 5.6% Discount Rate

Benefits of Targeting Under Two Tests

NPV of GT Relative to Years Infrastructure Deferred

So... Did it work?

- Large Manufacturer located in the area 4MW load with no DR opportunity
- ~1 1.5MW other new load
- 2013 95/5 load peak load significantly LOWER than forecasted
- 2.2MW PV expected to be commissioned 2013
- Peak moved from 3pm to 6pm

Evolving Process

- Instead of statewide programs vs. geotargeting, simply whether to GT or not
- Looking more holistically at constraint and the range of potential solutions
 - Demand Response, Load Shifting Technologies
 - PV, other DG
- Re-evaluating energy efficiency potential in the area given two years more of GT

How much will it cost to expand EE in GT area beyond statewide programs?

GEEG developed an NTA EE Calculator to

- Specify quantities of additional peak savings
- Account for base-case program savings
- Develop and apply more granular estimates than results from maximum potential analysis
- Characterize GT program costs

Specifying Quantities of Additional EE Resources

- Select annual incremental EE savings to reach total contribution toward resource gap
 - Nonresidential retrofit
- Recognize expected results from current statewide plans
- Estimate per-project savings
 - Customer size mix
 - Per-participant savings as % of customer load
 - Total number of projects

Specifying Quantities of Additional EE Resources (continued)

1 Select characteristics of EE retrofit resource investment									
				2014	2015	2016	2017	2018	Total
a Targeted custom retrofit projects substituting for EEU base	case								
i Total incremental annual peak kW savings from BEF custo	om retrofit in t	argeted are	a 🛛	300	500	500	500	500	2,300
Cumulative	Cumulative						1,800	2,300	
ii Calculate total annual targeted savings required									
(a) Peak kW/yr				508	708	708	708	708	3,340
(b) Annual energy, MWh/yr				3,115	4,341	4,341	4,341	4,341	20,481
iii Project sizing	L	М	S						
(a) Project size category peak savings as share of total	33%	<mark>33%</mark>	33%						
(b) Average peak kW load per participant	500	100	20						
(c) Average % savings	8%	13%	<mark>15%</mark>						
(d) Average peak kW savings per project	37.5	12.5	3.0						
(e) Targeted kW by project size category		L		169	236	236	236	236	1,113
		М		169	236	236	236	236	1,113
		S		169	236	236	236	236	1,113
		То	tal	508	708	708	708	708	3,340
(f) Target project counts by project size category		L		5	6	6	6	6	30
		М		14	19	19	19	19	89
		S		56	79	79	79	79	371
Calculate number of projects by size category by year		Το	tal	75	104	104	104	104	490

Accounting For Base-Case Program Savings

- Annual savings expected from statewide business retrofit
- Annual retrofit program expenditures
 - Financial incentive budget
 - Average share of total project capital costs
 - Other program implementation costs
- Pro-rated for GT area according to area energy usage percentage of state

Accounting For Base-Case Program Savings (continued)

	2014	2015	2016	2017	2018	Total
b EEU base case savings and spending						
i EEU base case statewide BEF custom retrofit savings						
(a) Peak kW/yr	8,000	8,000	8,000	8,000	8,000	72,000
(b) Annual energy, MWh/yr	49,056	49,056	49,056	49,056	49,056	441,504
ii EEU base case % of statewide totals in targeted area by year						
(a) Peak kW/yr	2.6%	2.6%	2.6%	2.6%	2.6%	
(b) Annual energy, MWh/yr	2.6%	2.6%	2.6%	2.6%	2.6%	
iii EEU base case statewide BEF custom retrofit program spending by year						
(a) Financial incentives	\$ 8,000,000	\$8,000,000	\$8,000,000	\$8,000,000	\$8,000,000	\$72,000,000
(b) Average share of total project capital costs	40%	40%	40%	40%	40%	
(c) Program implementation costs	\$ 4,000,000	\$4,000,000	\$4,000,000	\$4,000,000	\$4,000,000	\$36,000,000
iv EEU base case custom retrofit spending in targeted area, % of statewide	2.6%	2.6%	2.6%	2.6%	2.6%	

Developing More Granular Estimates than Results from Maximum Potential Analysis

- Prior maximum potential study indicated unacceptably high costs
- Resource planners sought intermediate levels of savings and their costs
- "Boots on the ground" project assessment rejected as too expensive for NTA scoping analysis
- Approach: Use empirical analysis of actual EEU retrofits to estimate project capital costs

Developing More Granular Estimates than Results from Maximum Potential Analysis (continued) **Project Data**

OF PUBLIC SERVICE

15

Developing More Granular Rstimates than Results from Maximum Potential Analysis (continued) **Regression Model**

	Multiple. R-square	0.988]		
	Adjusted. R-square	0.988]		
	Degrees of Freedom	5961			
	Residual standard Error	0.8492]		
			Standard.		
Category	Variable	Coefficient	Error	T value	Pr(> t)
Average	ASP	(0.215)	0.006	-38.684	<2.00E-16
Savings	1/ASP	8.031	0.181	44.276	<2.00E-16
Period (ASP)	ln(ASP)	3.926	0.036	108.883	<2.00E-16
Gross Peak	1/kW	0.0024	0.0005	4.59	0.000452
Savings (kW)	ln(kW)	(0.185)	0.008	-22.313	<2.00E-16
	EFF_LIGHTING	(0.207)	0.032	-6.378	1.93E-10
Flags (1 is	EFF_AC	(0.256)	0.070	-3.664	0.000251
true 0 false)	JOB_FLAG	0.278	0.026	10.552	<2.00E-16
	CUSTOM_FLAG	(0.099)	0.025	-3.941	1.04E-05
	GTPREMISE	(0.101)	0.029	-3.431	0.00605

Effects of Project Savings Period on \$/kW

Assumes mean values for other inputs

Effects of Project kW on \$/kW

Assumes mean values for other inputs

Effects of Other Variables on \$/kW

Input	Effect
EFF_LIGHTING	Adding lighting to a project decreases the \$/kW by approximately 19%
EFF_AC	Adding air-conditioning measures to a project decreases the \$/kW by approximately 23%
JOB_FLAG	A retrofit job (code 6012) costs approximately 32% more per kW than an end-of-life "natural" replacement of existing equipment (job code 6013).
CUSTOM_FLAG	A custom project costs approximately 9% less per kW than a prescriptive project.
GTPREMISE	A geo-targeted premise costs approximately 10% less per kW than a non-geo-targeted one.

Developing more granular estimates than results from maximum potential analysis (continued) Total Area Retrofit Costs (Base Case + GT)

							2014	2015	2016	2017	2018	Total
c Regression prediction for total project capita	al cost	L	. М	I	S	5						
i Independent variable values	Input in r	egression o	capital cost	s shee	et							
(a) Average kW/project by size category	S	tep a iii (d)										
(b) Average savings period												
(c) End use (lighting, AC)	Input in regression capital costs sheet											
(d) Job flags (retrofit, custom, GT)												
ii Calculate \$/kW capital cost by project size	category \$	1,258	\$ 1,196	\$	1,629	/kW	1					
iii Calculate total annual retrofit project capi	tal costs			L		\$	212,997	\$ 296,854	\$ 296,854	\$ 296,854	\$ 296,854	1,400,415
				М		\$	202,525	\$ 282,259	\$ 282,259	\$ 282,259	\$ 282,259	1,331,562
				S		\$	275,854	\$ 384,457	\$ 384,457	\$ 384,457	\$ 384,457	1,813,683
				Tota	al		691,376	963,571	963,571	963,571	963,571	4,545,660

Characterizing GT EE Program

- Assumption: GT program REPLACES existing program design
- Reasoning: Impossible to maintain separate programs side by side for same target population in same territory

Characterizing GT EE Program (continued) Elements by Project Size Category

- Financial incentives
 - Payback period "buydown"
 - Implies % of capital costs covered
- Customer acceptance rates
- Implementation costs
 - Fixed
 - Administration
 - Marketing
 - Evaluation
 - Variable
 - Project development
 - Inspection

Characterizing GT EE Program (continued) Elements by Project Size Category

								2014		2015		2016		2017	2018		Tota
а	Cust	tome	r financial ince	entives													
	A١	/g pro	oject payback	Paybao	ck buydown	%	capital cost										
	i	L	10		1.5		85%	\$ 181,048	\$	252,326	\$	252,326	\$	252,326	\$ 252,326	\$	1,190,353
	ii	Μ	8		1		88%	177,209		246,977		246,977		246,977	246,977		1,165,117
	iii	S	6		0		100%	275,854		384,457		384,457		384,457	384,457		1,813,683
	iv	Calcu	late targeted	EE retrofit fir	nancial ince	ntive budget	Total	\$634,111	\$	883,760	\$	883,760	\$	883,760	\$ 883,760	\$	4,169,153
	v	Calcu	late incremen	ital EE retrofi	it ressource	annual financia	al incentive budget	\$ 426,111	\$	675,760	\$	675,760	\$	675,760	\$ 675,760	\$	3,129,153
b	> Implementation costs																
	i	Fixed	l costs by year														
		(a)	Administratio	n				\$ 150,000	\$	150,000	\$	150,000	\$	150,000	\$ 150,000	\$	750,000
		(b)	Marketing					\$ 100,000	\$	100,000	\$	100,000	\$	100,000	\$ 100,000	\$	500,000
	_	(c)	Evaluation					\$-	\$	50,000	\$	50,000	\$	50,000	\$ 50,000	\$	200,000
		Total	fixed impleme	entation cost	S			\$ 250,000	\$	300,000	\$	300,000	\$	300,000	\$ 300,000	\$	1,450,000
	ii	Varia	ble costs per p	project by siz	e category												
		(a)	Project accept	tance rate	(b)	Project develo	pment/audit cost	(c)	Pro	oject Inspec	ctior	n cost					
		L	<mark>67%</mark>			<mark>\$ 6,000</mark>			\$	1,000							
		М	75%			<mark>\$ 3,000</mark>			\$	500							
		S	<mark>90%</mark>			<mark>\$ 1,000</mark>			\$	300							
		(d)	Project develo	opment/audi	t costs			\$ 157,543	\$	219,567	\$	219,567	\$	219,567	\$ 219,567	\$	1,035,812
		(e)	Project inspec	ction costs				\$ 28,222	\$	39,333	\$	39,333	\$	39,333	\$ 39,333	\$	185,556
		(f)	Total variable	implementa	tion costs			\$ 185,765	\$	258,901	\$	258,901	\$	258,901	\$ 258,901	\$	1,221,368

Calculating Net Incremental Costs of Additional GT EE Resources

2 Targeted program budget						
	2014	2015	2016	2017	2018	Total
iii Calculate total annual implementation costs	\$ 435,765	\$ 558,901	\$ 558,901	\$ 558,901	\$ 558,901	5 2,671,368
iv Calculate incremental annual EE retrofit program implementation costs	\$ 331,765	\$ 454,901	\$ 454,901	\$ 454,901	\$ 454,901	5 2,671,368
c Calculate incremental annual retrofit EE program expenditures	\$ 757,876	\$1,130,661	\$1,130,661	\$ 1,130,661	\$1,130,661	5,280,520
d Calculate annual incremental EE total resource costs	\$ 503,141	\$ 898,472	\$ 898,472	\$ 898,472	\$ 898,472	5 4,097,028

3 Combine EE incremental retrofit resource acquisition costs and savings with other NTARC components

Questions?

TJ Poor

Walter.Poor@state.vt.us

John Plunkett

plunkett@greenenergyeconomics.com

www.greenenergyeconomics.com

