DHW System Energy Flow

Mechanical Room

Cold water supply

Hot water supply

Hot water return

Branch

End-Use Energy

Water Heater Losses

Recirculation Loop Losses

Branch Losses

Distribution Losses
Study Goals

- Conduct field monitoring of DHW systems in more than 30 multi-family buildings in California
- Assess and analyze the detail energy performance of each DHW System components
- Assess the energy saving potential of control strategies
System Definition
System Energy Flow Analysis
DHW Distribution Configuration

Site #1
Sacramento, CA

Site #2
San Francisco, CA
DHW System Energy Flow

- Water Heater Losses: 45%
- Distribution Losses: 25%
- End-Use Energy: 29%
- Recirculation Loop Losses: 1%

Mechanical Room
- Hot water supply
- Hot water return
- Cold water supply
- Branch
DHW System Performance Variation

- E_{Heater Loss} Water Heater Losses
- E_{Recirc Loss} Recirculation Loop Losses
- E_{Branch Loss} Branch Losses
- E_{Draw Overall} System Efficiency

Percentage:
- Site #1
- Site #2
- Site #3
- Site #4

Values:
- Heater Loss: 30%
- Recirculation Loop Loss: 20%
- Branch Loss: 2%
- Draw Overall Efficiency: 49%
Energy Consumption per Gallon of Hot Water Draw

![Energy Consumption Chart]

- **Site #1**: Low energy consumption with minimal losses.
- **Site #2**: Moderate energy consumption with some losses.
- **Site #3**: High energy consumption with significant losses.
- **Site #4**: Moderate energy consumption with minimal losses.

Legend:
- End-Use Energy
- Branch Losses
- Recirculation Loop Losses
- Water Heater Losses
DHW system controls

Pump Control

Temperature Supply Control

Demand Control

Temperature Modulation
DHW system performance under Controls

Gas Consumption Reduction normalized by gallon of water

Recirculation Loop Losses Reduction normalized by gallon of water

Site #2 – SF, CA
Control Analysis

- **The key to energy savings**
 - Reduce recirculation loop temperatures as much as possible
 - The return portion of the recirculation loop doesn’t need to be warm

- **Pump off ≠ Cold Recirculation loop**
 - Pipe insulation can keep recirculation loop warm for extended period (~1hr)
 - hot water draws will also help sustain recirc. loop temperatures

 pump can be kept off periodically even during peak usage
A Better Control Strategy?

- Turn on recirculation pump periodically (every 1-2 hr)
- Modulate water heater temperature during off-peak time
Hot Water Draw Study

- Wide range of water usage per occupant
- Strong influence of weather on water usage
- No observation of obvious water usage increase under controls
- Analysis of hot water usage pattern to provide peak demand statistics to guide system and pipe sizing
Guideline for DHW System Design

- **Water heater/boiler efficiency is still the most important component to system efficiency**
 Proper system sizing will help to reduce standby and short-cycling losses

- **Distribution system design**
 Place recirc. loop through the middle of the building (this is the same concept as placing water heater near fixture)

- **Control and monitoring**
 Even a simple temperature indicator on HW return can be very useful
Thank you!

Charlotte Bonneville
Associate Project Manager
HMG Main Office - Sacramento
11211 Gold Country Blvd., #103
Gold River, CA 95670
bonneville@h-m-g.com