

Air Distribution Systems in Conditioned Spaces – i.e. "Ducts in Unvented Attics"

Neil Moyer Principal Research Engineer

A Research Institute of the University of Central Florida

The Norm: Ducts in Unconditioned Spaces

- Losses and Risks?
 - IAQ Issues
 - Durability Losses
 - Conductive gains/losses
 - Duct Leakage
- Consequences
 - Increased machine run time
 - Durability & Cost
 - > Unplanned air exchange
 - Extreme thermal conditions
 - Mold, Condensation, & Rot
 - Allergens & Irritants

Supply leak

Return Side Leaks
Air pulled in
Bldg. pressurization

•Conditioned air lost

• Bldg. depressurization

•Supply Side Leaks

Return leak

Supply leak

- Sealed and Insulated Ducts: continuous thermal barrier and sealed with mastic and mesh *including the return plenum*.
- Unvented Attics and Crawlspaces move the air and thermal barriers to the other side of the air distribution system

 Interior Duct Systems – move the air distribution system to the inside of the house's thermal and air barriers.

Cost Effectiveness

- Example Economics from North Carolina Houses
 - **\$0** No incremental cost for duct installation
 - +\$200 Drywall for miscellaneous air barriers
 - **\$0** Ceiling insulation will be thermal barrier
 - +\$350 Labor + materials to install and seal air barrier
 - \$250 ~1/2 ton reduction in heating/cooling
 - **\$300** FIRST COST increase
- Annual Savings = \$86
- Simple payback...less than 4 years!

Vented attic

Sealed attic

Sealed or Unvented Attic

EquipmentStorageFuture expansion

Energy Savings
Dry Ducts
Easy Inspection

Case Description	Cooling Savings		Peak Demand Reduction	
	kWh	Percent	kW	Percent
RGS (Control)	0	0%	0	0%
RWS (White Shingle)	300	4%	0.48	17%
RSL (Sealed Attic)	620	9%	0.13	5%
RTB (Terra Cotta Tile)	180	3%	0.36	13%
RWB (White S-Tile)	1,380	20%	0.92	32%
RWF (White Flat Tile)	1,200	17%	0.98	34%
RWM (White Metal)	1,610	23%	0.79	28%

* Percentages relative to typical values for average sized detached S. FL homes

Case Study: The Hoak Residence

- 4,250 sqft 2-story w/basement
- 2-speed compressor, 2.5 5 ton & variable speed air handler unit
- Heat Pump water heater
- ERV w/backup dehumidifier

Air Conditioner Performance - August 24, 2001

Bonus room conversion

Ducts in conditioned space

Convention Insulation Anomalies

Less Cost

Unvented Roof

Advanced Framing

High-Performance Windows

Right-Sized Air Conditioner System

Energy Efficiency and Renewable Energy

-\$750 SAVINGS 2-ton reduction **Controlled Ventilation System** Dehumidifier COST DIFFERENCE **Building Technologies Program**

+\$300 ADDED COST Source: Edminster, Pettit, Ueno, Menegus, and Baczek 2000.

+\$250 ADDED COST

+\$150 ADDED COST

No need to install vents

• 2x6s @ 24" o.c. instead of 2x4s @ 16" o.c.

+\$300 ADDED COST

More Cost

+\$700 ADDED COST

Conventional

Moving insulation

-\$100 SAVINGS

-\$250 SAVINGS

After the Aftermath 2004

Charley – Francis – Ivan - Jeanne

Soffit failure = water entry

Florida Building Code, Residential, 2005 Supplement

CHAPTER 8 ROOF-CEILING CONSTRUCTION

R806.4 Conditioned attic assemblies: Unvented conditioned attic assemblies (spaces between the ceiling joists of the top story and the roof rafters) are permitted under the following conditions:

- 1. No interior vapor retarders are installed on the ceiling side (attic floor) of the unvented attic assembly.
- 2. An air-impermeable insulation is applied in direct contact to the underside/interior of the structural roof deck. "Air-impermeable" shall be defined by ASTM E 283.

3. Shingles shall be installed as shown:

- a. For asphalt roofing shingles: A 1-perm (57.4 mg/s . m2.Pa) or less vapor retarder (determined using Procedure B of ASTM E 96) is placed to the exterior of the structural roof deck; i.e. just above the roof structural sheathing.
- b. For wood shingles and shakes: a minimum continuous ¼ inch (6 mm) vented air space separates the shingles/shakes and the roofing felt placed over the structural sheathing.

