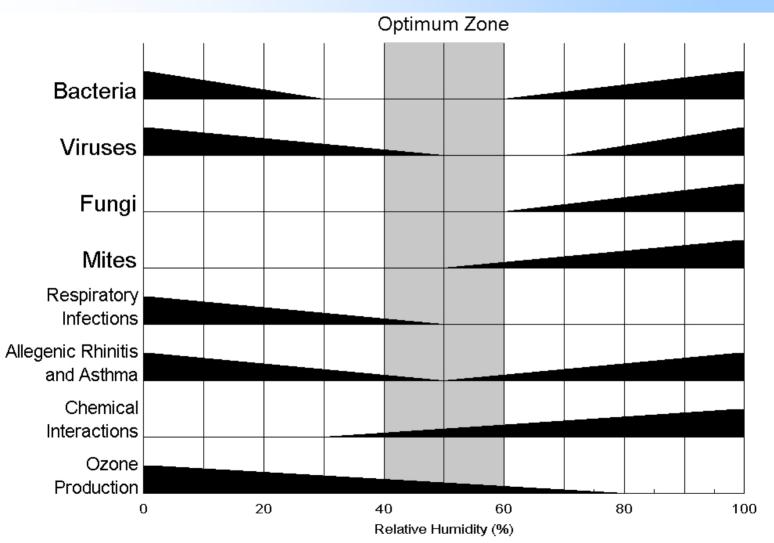
Air Conditioning for Hot-and-Humid Climates: Commercial Technologies

ACEEE Market Transformation Conference Emerging Technologies March 21, 2007

Hugh I Henderson, Jr., P.E. CDH Energy Corp. Cazenovia, NY www.cdhenergy.com

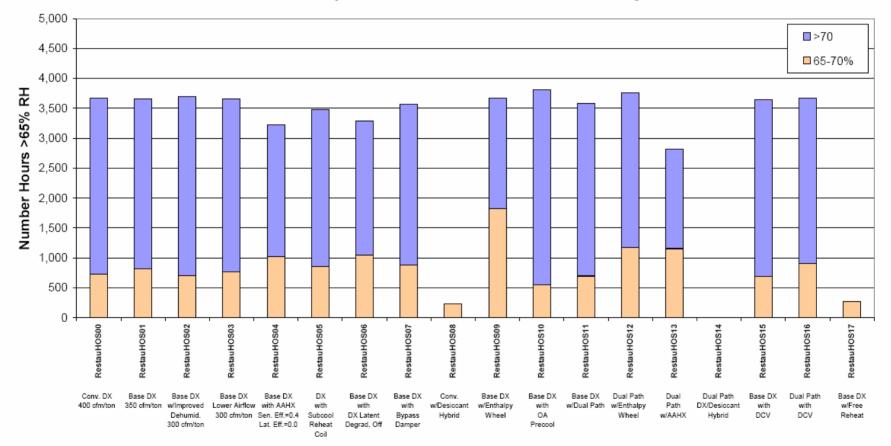

Overview

- The Need for Humidity Control
 - building applications with greatest need
 - HVAC Control issues
- Technologies to Control Humidity
 - active humidity control
 - enhanced cooling systems
 - ventilation pretreatment
- The Cost of Humidity Control

– which technologies are best?

What Should Humidity Levels Be?

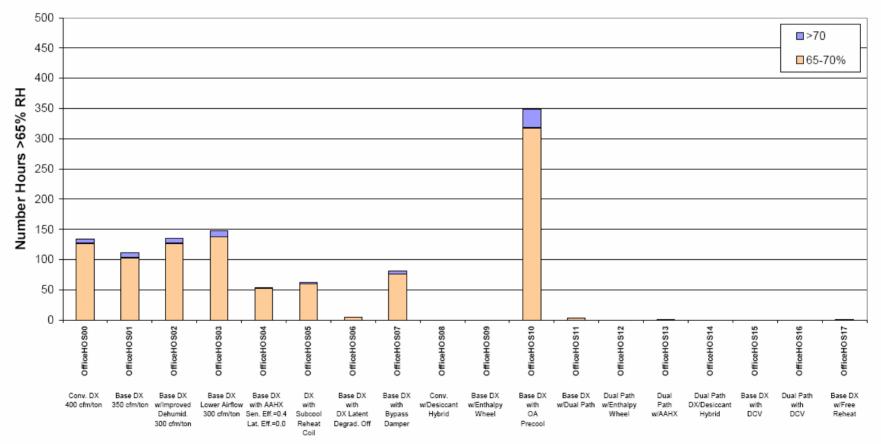
Maintain space below 60-65% RH


Where is Humidity a Concern?

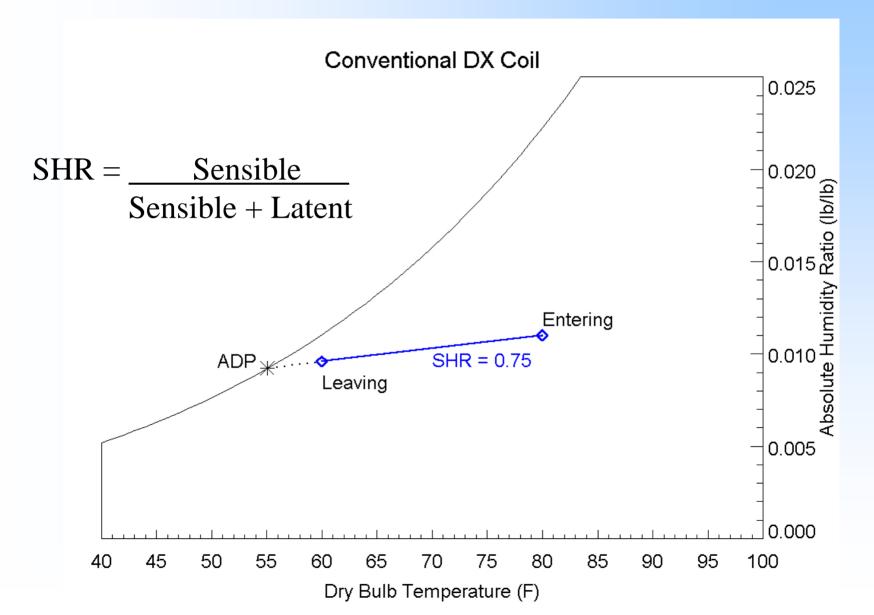
- Applications with High Ventilation

 outdoor air is largest source of moisture
- Applications with Low Sensible Cooling Loads
 - display cases in supermarkets provide cooling
 - theatres with high occupancy, but no windows or lights
- Applications where HVAC Design/Controls Degrade Latent Performance
 - evaporation of moisture from cooling coil when cooling is off but fan continues to operate

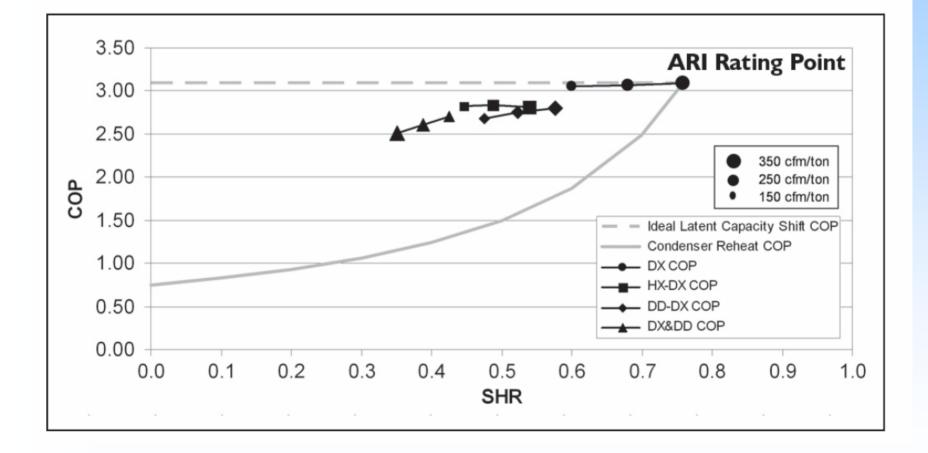
High Humidity Hours Houston Restaurant


2001 Standard Restaurant in Houston TX Number of Occupied Hours Zone Relative Humidity >65%

ASHRAE 1254-RP Final Report

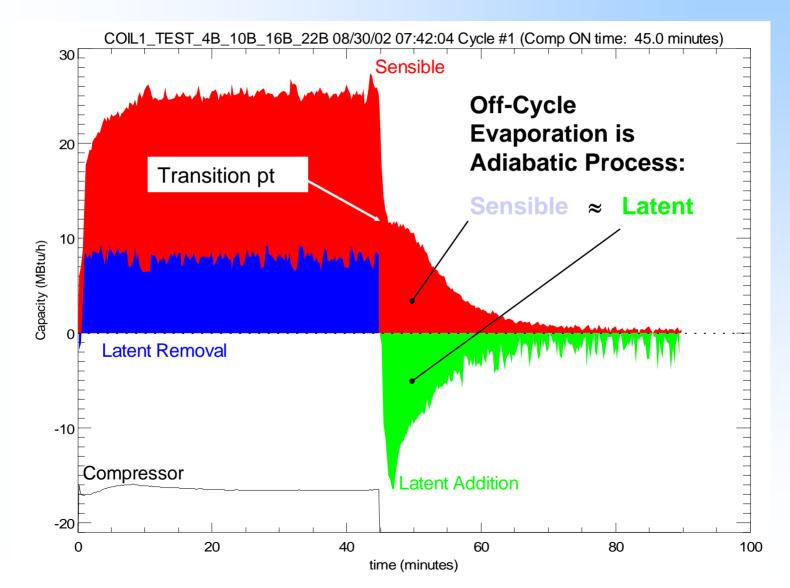

High Humidity Hours Houston Office

2001 Standard Office in Houston TX Number of Occupied Hours Zone Relative Humidity >65%

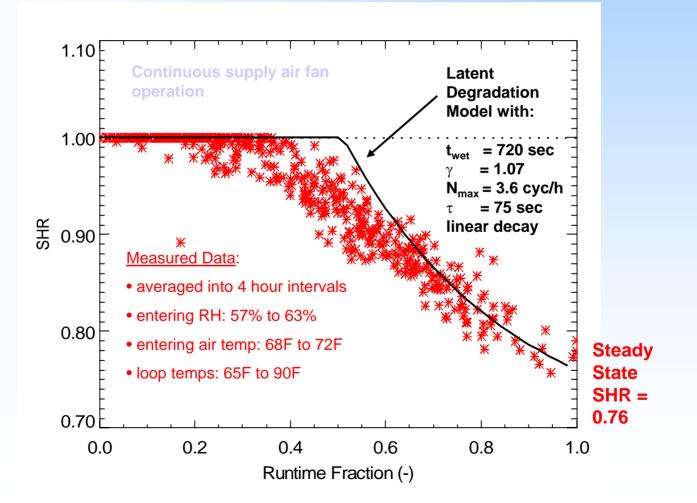


ASHRAE 1254-RP Final Report

Conventional Cooling Coil

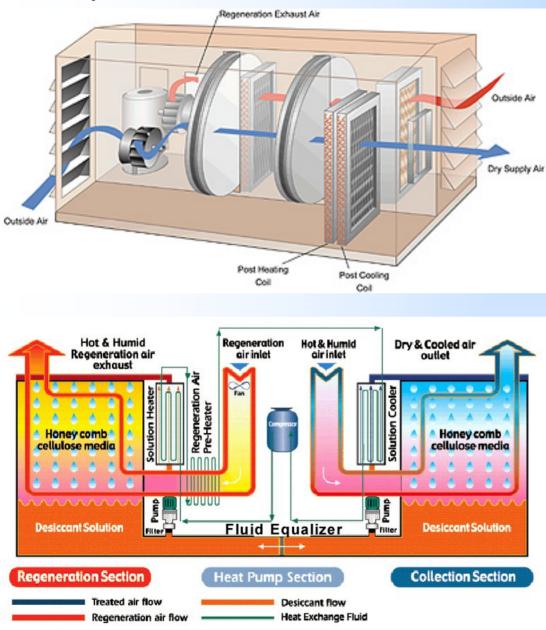


Better Dehumidification means Lower Efficiency

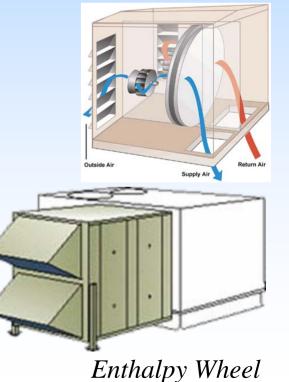

Kosar – ASHRAE Journal 2006

Sensible and Latent Capacity With Continuous Supply Air Fan Operation

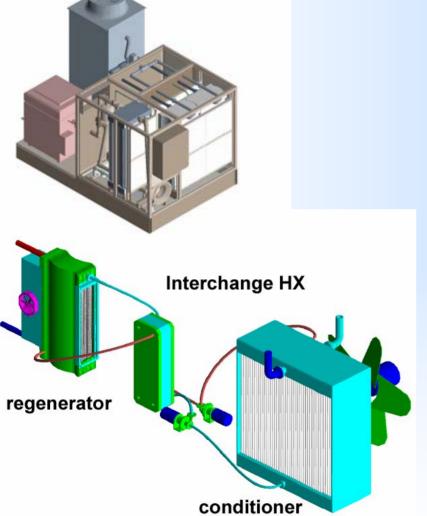
Latent Degradation at Part Load


Shirey, Henderson & Raustad (2006)

Novel Dehumidification Technologies


- Enthalpy wheels (recover heat and moisture)
- Gas-fired desiccant wheel systems
- Liquid desiccant systems
 - Electric heat pump systems
 - Thermally activated systems
- Hybrid electric desiccant system

Gas-fired Desiccant Wheel Unit



Liquid Desiccant Heat Pump (Drykor)

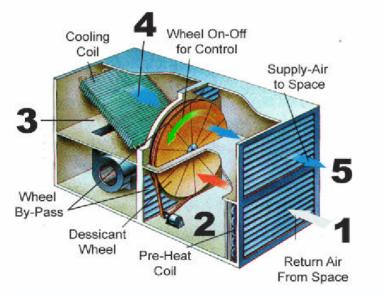
Desiccant Technologies

Recent Improvements Liquid Desiccants

Thermally Activated Liquid Desiccant (*AIL Research*)

- Low Flow Absorber low carryover
- 1-¹/₂ Effect Regeneration provides better efficiency
- More compatible with solar thermal (e.g., hot water)

Recent Improvements Gas-Fired Hybrid Desiccants



Hybrid Desiccant Unit (Semco)

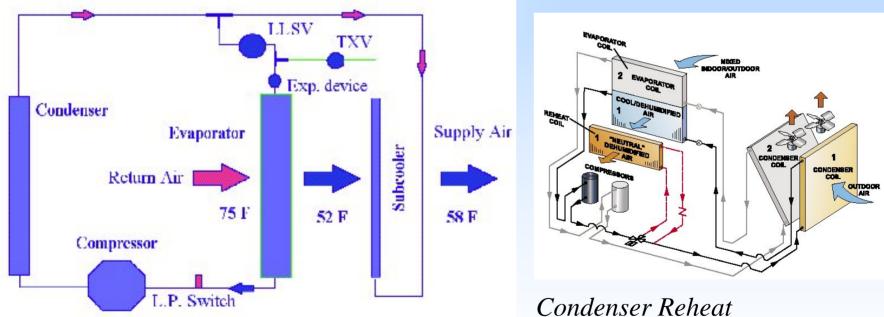
- Smaller Desiccant Wheel treats a portion of supply air stream
- Desiccant "likes" cool high RH inlet air
- Hybrid approach uses advantages of each system

Munters

Munters HCU

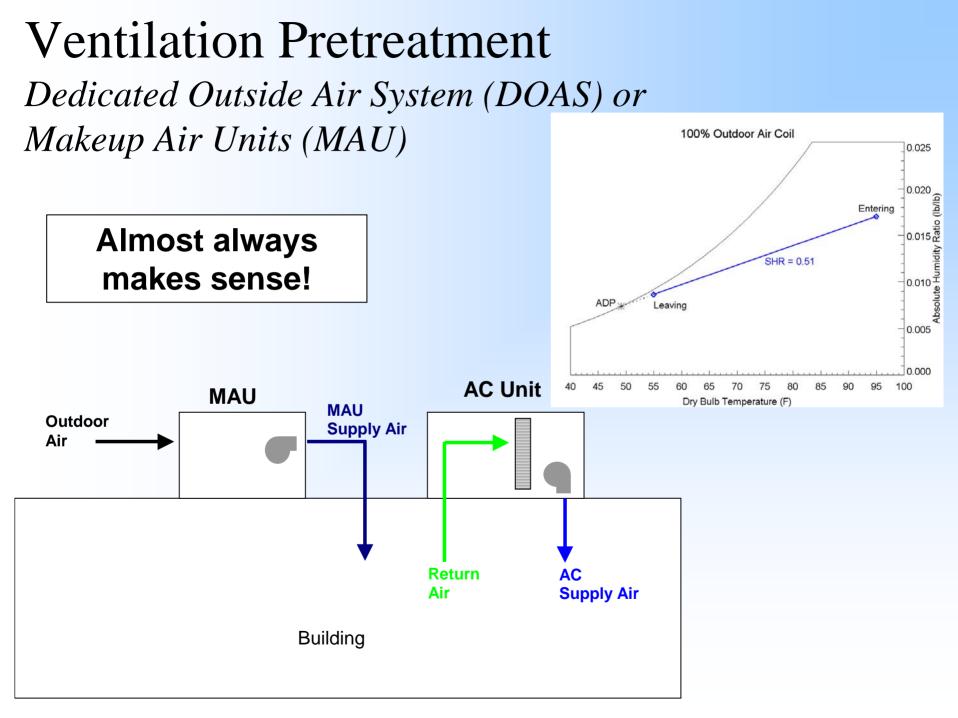
Cromer Cycle (Trane CDQ)

Recent Improvements Electric Hybrid Desiccants

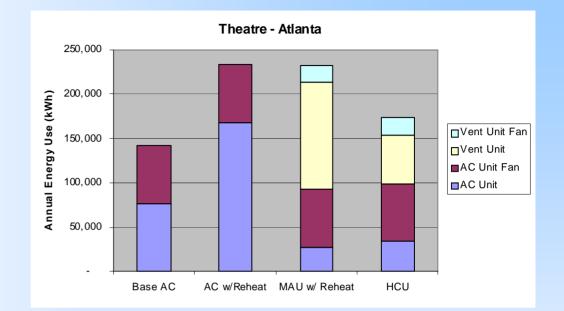

- Combine desiccant wheel with vapor compression
- *HCU uses condenser heat to regenerate desiccant wheel*
- CDQ uses desiccant to enhances cooling coil SHR

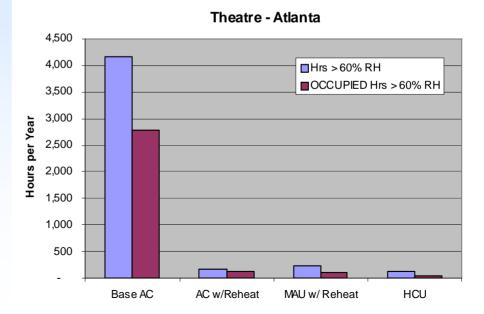
Improving AC Performance Lowering SHR

- Lower supply air flow rate (400 \rightarrow 350 cfm/ton)
- Colder coil temperature (chilled water)
- Reheat supply air (using condenser heat)
- Subcool/reheat refrigeration circuit
- Ventilation Pretreatment


Enhanced AC Concepts

Improving Conventional AC


Sub/Cool Reheat (Carrier Humid-mizer)


Condenser Reheat (Lennox Humiditrol)

Typical Simulation Results

- Depends widely on application details
- Fan power issues often drive annual results

ASHRAE Research 1254-RP Report

- Results available for various:
 - Climates
 - equipment types
 - building applications
 - ventilation assumptions

2001 \$	Standard										
		Humid	ity Cor	ntrol (O	ccupie	d Hour	s >65%	RH)			
	Location ==>	MI	HO	SH	FW	AT	ST	SL	NY	CH	PO
Case	System										
00	Conventional DX	2384	1636	1169	699	599	455	471	257	233	(
01	Base DX	2279	1519	1066	675	580	438	441	280	226	(
02	DX w/Improved Dehumid.	2361	1653	1153	775	693	519	512	334	261	
03	Base DX w/Lower Airflow	2273	1573	1082	755	706	514	483	340	266	
04	Base DX w/AAHX	928	803	542	528	331	289	235	237	157	
05	Base DX w/Subcool Reheat	1896	1167	777	454	373	281	312	203	179	
06	Base DX w/o Lat. Coil Degrad.	1341	657	406	99	55	95	133	39	31	
07	Base DX w/Bypass Damper	1958	1233	829	537	417	331	334	238	195	(
08	Base DX w/Desiccant	0	0	0	0	0	0	0	0	0	
09	Base DX w/Enthalpy Wheel	19	5	14	1	5	4	1	2	0	
10	Base DX w/OA Precool	2337	1724	1294	1180	794	620	730	260	217	
11	Dual Path	653	252	78	38	13	25	2	18	6	
12	Dual Path w/Enthalpy Wheel	4	5	11	0	5	0	0	0	0	
13	Dual Path w/AAHX	241	169	53	19	6	0	2	6	3	(
14	Dual Path w/Desiccant	0	0	0	0	0	0	0	0	0	(
15	Base DX w/DCV	2279	1519	1066	675	580	438	441	280	226	(
16	Dual Path w/DCV	653	252	78	38	13	25	2	18	6	
17	Base DX w/Free Reheat	3	12	10	2	0	0	1	4	0	(

Retail

	Relative Annual HVAC Energy Cost vs. Base DX (Case 1)										
	Location ==>	MI	НО	SH	FW	AT	ST	SL	NY	CH	PO
Case	System										
00	Conventional DX	-1%	0%	0%	-1%	0%	0%	0%	1%	0%	1%
01	Base DX	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
02	DX w/Improved Dehumid.	-12%	-12%	-11%	-13%	-10%	-7%	-7%	-11%	-7%	-8%
03	Base DX w/Lower Airflow	-9%	-9%	-8%	-10%	-7%	-5%	-5%	-9%	-5%	-6%
04	Base DX w/AAHX	24%	21%	18%	18%	13%	9%	9%	12%	8%	9%
05	Base DX w/Subcool Reheat	12%	11%	9%	10%	7%	5%	5%	6%	4%	4%
06	Base DX w/o Lat. Coil Degrad.	7%	6%	5%	6%	5%	3%	3%	4%	3%	2%
07	Base DX w/Bypass Damper	3%	3%	2%	2%	1%	1%	1%	1%	1%	0%
08	Base DX w/Desiccant	181%	84%	79%	50%	65%	18%	15%	7%	-11%	-3%
09	Base DX w/Enthalpy Wheel	-27%	-30%	-30%	-31%	-30%	-43%	-47%	-32%	-46%	-18%
10	Base DX w/OA Precool	8%	6%	6%	3%	7%	6%	5%	8%	7%	8%
11	Dual Path	-26%	-22%	-20%	-20%	-19%	-13%	-13%	-21%	-14%	-18%
12	Dual Path w/Enthalpy Wheel	-40%	-43%	-41%	-42%	-41%	-51%	-55%	-44%	-55%	-28%
13	Dual Path w/AAHX	0%	-1%	-2%	-1%	-5%	-4%	-3%	-10%	-6%	-11%
14	Dual Path w/Desiccant	151%	60%	51%	24%	27%	-6%	-8%	-13%	-29%	-14%
15	Base DX w/DCV	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
16	Dual Path w/DCV	-26%	-22%	-20%	-20%	-19%	-13%	-13%	-21%	-14%	-18%
17	Base DX w/Free Reheat	54%	40%	29%	27%	19%	12%	13%	12%	9%	1%

 % Change in Annual HVAC Energy Cost

 < 0% (less energy use)</td>

 1% to 25% (more energy use)

 20% to 50% (more energy use)

 >50% (more energy use)

Criteria	Best Cases (Case ID Number)										
Minimum Energy Cost (EC)	12	12	12	12	12	12	12	12	12	12	
Minimum EC, <=150 hrs RH>65%	12	12	12	12	12	12	12	12	12	12	
Minimum Life Cycle Cost (LCC)	12	12	12	12	09	09	09	12	09	09	
Minimum LCC, <=150 hrs RH>65%	12	12	12	12	09	09	09	12	09	09	
Ratio Min LCC<=150 to Case 01 LCC	0.8	0.8	0.7	0.7	0.8	0.7	0.7	0.8	0.7	0.9	
	MI	=	Miami FL			ST	=	Washington DC			
	но	= Houston TX			SL	=	St. Louis MO New York NY Chicago IL Portland OR				
	SH	=	 Shreveport LA Fort Worth TX Atlanta GA 			NY					=
	FW	=				СН					=
	AT	=				PO					=

Summary

- Wide Spectrum of Dehumidification Technologies are Available
 - Best solution depends on building application details
 - Equipment configuration and controls also maters
- Hybrid Technologies look promising
- Ventilation pre-treatment is almost always a good idea in commercial applications