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A conditional demand analysis was undertaken for a New York State utility to estimate typical hourly electricity
use in fifteen residential end-uses for two day-types and four seasons. Most hourly conditional demand analyses
that have been done to date have ignored the effect of weather on hourly load patterns. In contrast, this study
developed hourly load estimates that are weather-sensitive. An innovative Bayesian approach was employed in
which previously estimated monthly unit electric consumption estimates and older metered household load
observations were used to specify priors to be incorporated into a generalized least squares estimation process. For
all but one end-use, the Bayesian priors were weighted equally with the actual load data. The effect of the priors
on the final estimated coefficients depended on the strength of the correlation between the actual observations on
total household electricity use and the explanatory variables, such as square footage and the stock of household
appliances. This Bayesian approach made it possible to estimate reasonable hourly load shapes even in cases where
multiple end-uses had very high saturations. The resulting estimates were developed into load shape representations
that can be used to forecast future electric hourly load. The results can also be used in demand side management
analyses to estimate unique end-use load shapes for households with different physical and demographic
characteristics.

Introduction

Estimates of hourly electricity use for residential and
commercial space heating, cooling, and other end-uses are
highly valued by electric utilities. End-use hourly load
estimates can be used to develop forecasts of electricity
demand that will reflect the effect of shifts in end-use
saturation and intensity levels on hourly and peak load
generation requirements. End-use hourly load equations
that relate hourly load use to household physical and
demographic characteristics can also be valuable in select-
ing customers for demand-side management programs.
End-use hourly load shapes can also be useful in rate
design analyses.

Utilities have a number of alternatives available for
developing estimates of hourly electricity use in residential
and commercial end-uses. Metering, which can provide
good estimates of end-use hourly electric load, is costly.
In addition, end-use metered estimates can be misleading
if the metered circuits include more than one end-use.
End-use metering projects are also usually conducted for
small sample sizes that preclude their use for developing

load estimates for different types of households, which are
needed for developing and evaluating alternative DSM
programs.

One low cost alternative to end-use metering for develop-
ing end-use hourly electric load estimates is conditional
demand analysis. In this approach, a statistical model is
used to disaggregate total household hourly electricity use
into end-use hourly load, based on each household’s stock
of appliances and physical and demographic
characteristics.

Much conditional demand analysis has been done since the
original work of Parti and Parti (Parti and Parti 1980).
Today, it is a fairly common practice to use conditional
demand analysis to estimate annual, or monthly, unit elec-
tric consumption estimates for residential end-uses and
electricity use intensities for commercial end-uses.
Conditional demand analysis has also been used to esti-
mate hourly load profiles for residential and commercial
end-uses. However, previous hourly conditional demand
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analysis has often been limited by the difficulty of esti-
mating load shapes for end-uses that are confounded. For
example, if 100 percent of the households have refrigera-
tors and 98 percent have clothes washers, it will be very
difficult to identify the amount of variation in total house-
hold hourly load that is attributable to these two end-uses.

Because of the inherent difficulty in estimating hourly end-
use coefficients, especially for end-uses that are con-
founded, a number of alternative approaches have been
developed to improve the estimation process. Some have
used the results of annual or monthly unit electric con-
sumption conditional demand analysis to develop variables
for an hourly model (McCollister 1987). This approach is
helpful in estimating the appropriate average hourly level
of end-use load, but cannot help in determining the hourly
end-use load pattern. More commonly, engineering
models have been used to develop Bayesian priors of
hourly end-use electricity use, which are then incorporated
into a generalized least squares estimation. (Schon and
Rodgers 1990; Rohmund et al. 1992; Caves et al. 1987.)
However, the common limitation of these engineering
models has been their inability to represent the human
behavioral aspects of electricity end-use consumption.

In our analysis, an innovative Bayesian approach was used
to perform a conditional demand analysis of residential
electricity use in the service territory of a New York state
utility. In this analysis, the Bayesian priors of electricity
use for each end-use were estimated using the results of a
previous monthly conditional demand analysis and load
shape representations developed from an earlier residential
household metering project.

Most hourly conditional demand analyses that have been
done to date have ignored the effect of weather on hourly
load patterns. In contrast, this study developed hourly load
estimates that are weather-sensitive.

The results of this estimation process demonstrate that this
approach offers a low cost means of developing hourly
electric end-use consumption estimates. Utilizing these
Bayesian priors yields reasonable estimates of hourly load
levels even for highly saturated end-uses, which is usually
not possible with ordinary least squares estimation. The
results provide estimates of end-use hourly load that when
summed match well with total household load. Combining
annual unit electric consumption estimates with metered
end-use load data can yield better priors than priors based
on engineering models because they incorporate the effects
of human behavior on end-use electricity consumption.

EPRI’s Hourly Electric Load Model (HELM) was used
throughout this project. First, HELM filled in missing
values in the raw total household metered data. HELM

also estimated the load shape representations that were
used in specifying the priors for this analysis. These load
shape representations were developed from an earlier end-
use metering study (Blaney 1992). HELM plots also
helped to visually analyze the total household metered data
to determine the appropriate break points for the weather
response functions estimated in the pre-processing phase
of the project. Lastly, the final estimated coefficients from
the conditional demand analysis were translated into
HELM load shape representation files for forecasting
future end-use electricity load.

Data Development and
Pre-Processing

Electricity Use and Household
Characteristics Data

Hourly household electricity consumption data were
developed from a New York state utility’s load research
metered data for the period September 1, 1992 through
August 31, 1993. The corresponding electric end-use
appliance stock and physical and demographic character-
istic data for each household were determined based on
the results of a household energy usage survey which was
completed in 1992. There were 375 households included
in the household energy survey. However, after eliminat-
ing households for which there were no load research
data, or for which some of the data were missing or
flawed, load and survey data for a total of 181 households
were included in the conditional demand analysis.

Observations on household hourly load were pooled into
four season (summer, winter, spring, and fall) and two
day-type (weekday and weekend) categories. Working
with eight season and day-type categories, a total of 192
regressions were run for this analysis (4 seasons * 2 day-
types * 24 hours).

If the hourly load observations were used for each house-
hold directly, there would be approximately 10,680 obser-
vations (60 weekdays * 181 households) for each of the
weekday hourly regressions and approximately 4,344
observations (24 weekend days * 181 households) for each
of the weekend hourly regressions. In order to reduce the
number of observations for each hourly regression, and
thus reduce the computation time and computer resource
requirements to manageable levels, a pre-processing step
was undertaken in which a piecewise linear weather
response function was estimated for each household in
each hour, season, and day-type combination. The func-
tional form of this weather response function was as
follows:
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where:

Figure 1 presents a winter season weather response func-
tion as defined by Equation (1) for an illustrative
household with electric space heating. The temperature in
this example ranges from 0 to 85 degrees with an assumed
break point temperature of 31 degrees.

For households with electric space heating, B in Equation
(1) should be less than zero indicating that as the tempera-
ture rises from 0 to 31 degrees the total household elec-
tricity use should decline. As the temperature increases
above the break point temperature, total household elec-
tricity use should continue to decline, but at a slower rate.
Thus, coefficient C in Equation (1) should typically be
greater than zero. But, the sum of B+ C should be less
than zero. Finally, as the temperature continues to rise the
weather response function will flatten out at some tem-

Weather response functions like Equation (1) were esti-
mated for each household for each hour in each of the
eight season and day-type combinations. These weather
response functions were then used to create three total
household electric use pseudo-observations per season and
day-type combination for each household in the data base.
For example, in winter months, the first pseudo-
observation estimated with the weather response function
corresponded to the total household electricity use at the
average temperature in the cold segment. This point is
identified as L1 in Figure 1. The second observation
corresponded to the estimated total household electricity
use at the average temperature in the mild segment, L2 in
Figure 1. The third observation corresponded to the esti-
mated total household electricity use at 60 degrees, L3 in
Figure 1, the temperature at which electricity use for
space heating was assumed to be zero.

Weather response functions with identical structures were
estimated for the spring and autumn seasons. Because the
electricity use data were obtained from households located
in upstate New York, there was little or no cooling load
observable in these spring and autumn seasons. Piecewise
linear weather response functions with a similar structure
were also estimated for the summer season. However, for
the summer season, the estimated B coefficients, as well
as the sum of the B and C coefficients, in Equation (1)
were expected to be positive for household with air
conditioning, reflecting the increase in cooling load as the

perature as the electric space heater is turned off. temperature increased.

Figure 1. Illustrative Weather Response Function
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Weather Data

The weather data used in this analysis were the actual
hourly temperature for each household’s region. For this
purpose, the households in the data base were grouped
into three weather regions: Albany; Syracuse; and
Buffalo.

Estimation of Priors

The Bayesian priors on residential end-use electricity use
developed for this analysis were derived from two com-
ponents: estimates of total annual electricity use for each
of the fifteen end-uses; and estimates of the distribution of
end-use electricity consumption for each end-use across
the 8,760 hours in the year.

The estimates of annual electricity use were obtained for
each end-use from the results of a residential conditional
demand analysis designed to estimate monthly unit elec-
tricity consumption estimates (Sebold, Mayer 1993). This
conditional demand analysis was performed using load and
survey data for each of the New York state utilities.

The coefficients from this New York state conditional
demand analysis were used to estimate the annual elec-
tricity use for each of the households in the hourly
conditional demand data base. In order to reflect the
variance in electricity use, high and low load level priors
were developed for each end-use based on the standard
deviation in load levels estimated for the households in the
hourly conditional demand analysis. For each prior,
estimates of household square footage and income were
also developed based on the standard deviation of these
household characteristics in the survey data used in the
hourly conditional demand analysis.

The distribution of annual end-use electricity consumption
across the 8,760 hours in the year was calculated for each
of the fifteen end-uses using the load shape representations
developed in an earlier study utilizing residential end-use
metered data from the same service territory on which the
hourly conditional demand analysis was performed
(Blaney 1992). The end-use metered data were collected
for the period April 1986 throughout March 1987.

Model Specification

The objective of this conditional demand analysis was to
develop estimates of typical hourly electricity use for
residential households by appliance end-use categories. To
this end, a statistical model was developed in which total
hourly household electricity use was specified to be a

function of the stock of electric end-use appliances and
household physical and demographic characteristics. The
general specification of the CDA model is given by the
following equation:

(2)

Where:

L it  =

X ijt  =

D ijt  =
=

e it  =

Electricity consumption in household i in
period t
Variables that determine electricity
consumption in household i by appliance j in
period t
1 if household i has appliance j in period t
0 otherwise
error term for household i in period t

In this specification, residential end-use hourly load is
estimated as a function of each household’s stock of
appliances, as denoted by the D ijt in Equation (2). In
general, the f(Xijt) are specified to consist of factors
influencing appliance usage. The fictional relationships
used in this analysis for weather-sensitive and non-
weather-sensitive end-uses are described below. The pur-
pose of the conditional demand analysis was to estimate
the f(Xijt)’s in Equation (2), which determine the hourly
electricity usage for each household appliance.

End-Uses

Functional forms, f(Xijt)’s in Equation (2), were included
in the conditional demand analysis for the fifteen end-uses
listed in Table 1. The saturation levels for each of these
end-uses is also listed in Table 1.

Specification for Weather-Sensitive
End-Uses

The fictional form of the conditional demand analysis
specification for weather sensitive end-uses can be illus-
trated using electric space heating as an example, as
presented in Equation (3):
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Where:

H it =

S Q F Ti =
INCOME i =
BACKUP i =

=

O Nit =

=

M I L Dit =

Electricity use for space heating in
household i in period t
Square footage for household i
Income for household i
1 if household i has a non-electric
backup space heating source
0 otherwise
1 if this is the first or second
observation for household i in period t
(i.e., space heating is on)
0 otherwise
1 if this is the second observation for
household i (i.e., observations for the
mild temperature segment)

= 0 otherwise
H E A T i = 1 if household i has electric baseboard

or resistance space heating
= 0 otherwise

In this specification, the dummy variable ON indicates
that this observation corresponds to the estimated house-
hold electricity use at a temperature that is cold enough
for the space heater to be operating. These observations
are represented as L1 and L2 in Figure 1 above. Simi-
larly, the dummy variable MILD indicates that this

observation corresponds to the estimated household elec-
tricity use at a relatively mild temperature, but one at
which the space heater is still operating. This observation
is represented as L2 in Figure 1 above.

In addition to electric baseboard and resistance heating,
electricity use for heat pump space heating, heat pump
cooling, and central air conditioning were estimated as a
function of household square footage and income levels
using functional forms similar to Equation (3). A simpler
functional form was used for portable heaters and room
air conditioners. Electricity use for these end-uses was
estimated simply as a function of the dummy variables ON
and MILD .

Specification for Non-Weather-Sensitive
End-Uses

For the non-weather-sensitive end-uses electricity use was
specified to be a function of the log of the number of
household members. For the miscellaneous end-use, elec-
tricity use was estimated to be a function of square
footage and the type of household—single family or
multi-family.

Model Estimation

The conditional demand analysis specification was esti-
mated twice for each of the 24 hours in the eight season
and day-type categories. In the first estimation process,
the specification was estimated using ordinary least
squares and excluding the Bayesian priors. This initial
estimation was undertaken to determine to what extent
reasonable hourly load profiles could be estimated for the
fifteen end-uses without the use of priors.

In the second estimation process, the Bayesian priors were
incorporated using a weighted least squares approach. In
this second estimation, equal weights were applied to the
actual observations and the Bayesian priors for all but one
appliance. Relative weights of 10-to-1 were placed on the
Bayesian priors for the miscellaneous end-use because of
the inability of the least squares model to estimate a load
shape for this end-use category.

Results

In general, the ordinary least square estimated coefficients
were statistically significant and had the right sign for the
electric space heating and air conditioning end-uses. How-
ever, ordinary least squares was not able to estimate
reasonable results for non-weather sensitive end-uses that
were confounded. For example, clothes washers, which
had a saturation of 95.7 percent, and microwave ovens,
which had a saturation of 93.1 percent were confounded.
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For these high saturation non-weather-sensitive end-uses,
the incorporation of the Bayesian priors in the weighted
least squares estimation greatly improved the estimated
load shapes.

The effect of the priors on the final estimated coefficients
depended on the strength of the correlation between the
actual observations on total household electricity use and
the explanatory variables, the f(Xijt)’s in Equation (2). For
example, if there was a strong correlation between total
household hourly electricity use and the number of house-
hold members for households with electric water heaters,
then the effect of incorporating the Bayesian priors on the
estimated coefficients for this end-use and the resulting
load profiles was minimal.

Figure 2 presents the estimated total electricity use load
shape for a representative household for a typical cold
winter weekday. Three load shapes are presented: the
ordinary least squares estimate; the Bayesian prior devel-
oped from the annual conditional demand analysis and the
end-use metered load shapes; and the weighted least
squares estimate incorporating the Bayesian priors.

There is relatively close agreement among the three esti-
mated total household load shapes. The least squares
estimates are higher than the Bayesian priors in all hours
except the early morning hours. As expected, the

Figure 3 presents the results of the least squares and the
Bayesian prior weight least squares estimation process for
electric space heating on cold winter weekdays. In most
hours the least squares estimation for electric space
heating yielded coefficients that had the right sign and
were statistically significant at the 95 percent confidence
level. As Figure 3 demonstrates, the space heating load
estimates resulting from the least squares estimation had a
typical space heating shape with a peak in the early
morning hours and a secondary peak in the evening hours.

Figure 3 also demonstrates the effect of incorporating the
Bayesian priors on the space heating load shape. Incor-
poration of the priors had little effect on the estimated
coefficients and resulting load shape in the peak morning
hours, the afternoon hours in which space heating elec-
tricity use is typically at its lowest levels, and at the peak
evening hours. However, inclusion of the priors tended to
raise the estimated space heating load levels substantially
in the early morning hours.

Figure 4 presents similar results for microwave ovens. In
this case, the ordinary least squares estimates had a typical
load shape for cooking end-uses with sharp spikes in the
morning breakfast hours and evening dinner hours. The
least squares estimates also indicate a large jump in elec-
tricity use in microwave ovens at 10 pm as well. While
the least squares estimates for microwave ovens have a

weighted least squares estimates are between the least typical pattern for cooking end-uses, they are unreason-
squares and Bayesian priors in all hours. ably high in magnitude.

Figure 2. Estimated Total Household Load Shapes for a Winter Weekday
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Figure 3. Estimated Electric Space Heating Load Shapes for a Winter Weekday

Figure 4. Estimated Microwave Oven Load Shapes for Winter Weekdays

The ordinary least squares overestimation of electricity yields a load shape that is much closer to the Bayesian
use in microwave ovens is indicated in Figure 4 by the priors than the least squares results.
large gap in magnitude between the least squares estimates
and the Bayesian priors. However, incorporation of the Figure 5 demonstrates the usefulness of the conditional
Bayesian priors in the weighted least squares estimation demand analysis results for estimating load shapes profiles
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Figure 5. Estimated Load Profiles for Large and Small Households for Winter Weekdays

for households with different physical and demographic
characteristics. The estimated electric space heating load
shape profiles for two different household types are shown
in Figure 5. Household 1 is a large household with total
square footage of 2,600 and a high income of $80,600. In
contrast, Household 2 is much smaller with square footage
of 900 and income of $17,200.

These results indicate that small, low income households
tend to have flatter electric space heating load profiles
than larger households with higher incomes. These results
could be useful in analyzing DSM load programs for elec-
tric space heating.

Finally, Figure 6 illustrates the substantial effect that
weather can have on hourly load levels in weather-
sensitive end-uses. The estimated hourly load levels for
electric space heating for a typical cold winter weekday
are nearly twice as high as the load levels on mild days.
Most conditional demand analyses done to date have
ignored this powerful weather effect.
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Figure 6. Effect of Temperature on Estimated Load Shapes for Electric Space Heating
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