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California’s recently established DSM measurement protocols specifically prescribe a set of DSM measurement
methods, including Conditional Demand Analysis. Recently, however, the California Public Utilities Commission
approved a temporary (partial) exemption from the protocols for San Diego Gas & Electric Company. The exemp-
tion was based on evidence provided by SDG&E that it had developed a separate measurement method—termed
Identification Based Modeling (IBM) or Simplified Conditional Demand Analysis—which is (1) at least equally
effective in estimating the gross energy impact of DSM measures, (2) less susceptible to error, and (3) significantly
less expensive to implement.

IBM begins with a conventional conditional demand regression model. However, to make the regression model less
susceptible to misspecification and errors in data collection, the regression coefficients are strategically divided into
two groups: those that will be held constant (when the model is eventually estimated using data), and those that
will be allowed to vary across customers in the database. It is shown that allowing some regression parameters to
vary across customers can dramatically reduce data collection requirements, with virtually no loss in the effective-
ness of the regression model, resulting in significant reductions in DSM measurement expense. The conclusions are
supported by a computerized Monte Carlo study that compared IBM and conventional conditional demand analysis
under a variety of conditions.

Introduction

Many electric utilities currently face the task of applying
regression techniques to customers’ energy consumption
data (used jointly in the regression with customer site
data) to measure the impact of their commercial Demand-
Side Management (DSM) programs. Since commercial
DSM programs are often thought of at the end-use level
(commercial lighting retrofit programs, for example, are
quite prevalent, as are space cooling programs), these
utilities often turn to regression techniques that likewise
consider customers’ energy consumption at the end-use
level. (A prime example is the recently adopted California
DSM Measurement Protocols which require utilities to
derive estimates of lighting and space cooling consumption
in addition to estimates of DSM savings for those same
end-uses. ) The most widely used regression technique of
this sort is Conditional Demand Analysis (CDA) which can
provide estimates of the end-use components of customers’
energy consumption provided that, (1) adequate data are
available and, (2) the mathematics of the regression
equation is correctly specified.1

However, as it is generally applied CDA requires onerous
amounts of customer-specific data and a high degree of
mathematical specification. The data requirements not only
imply substantial expense, but also significant customer
aggravation with on-site visits for data collection. With
respect to specification, it is generally true that regression
equations which are heavily specified face a good chance
of being mathematically misspecified, in which case the
regression application either fails overall or, at best,
provides biased estimates of the regression coefficients.
This is born out in the case of CDA by the general view
that while CDA has often been successfully applied to the
residential sector, its performance in the commercial and
industrial sectors (where energy consumption issues are
more complex) is a question.2

The purpose of this paper is to demonstrate that while
CDA provides a good starting point in any attempt at
DSM measurement, more thought should be given to the
separate phases of the DSM measurement task, so that
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certain elements of CDA can be exploited more effec-
tively. As will be demonstrated, a more careful considera-
tion of the separate phases of DSM measurement will
point to ways in which the data requirements of CDA can
be lessened, and to ways of reducing the chance of mathe-
matical misspecification. Specifically, in the usual case
where CDA is applied with the explicit goal of disaggre-
gating customers’ consumption by its end-use components,
a large number of regression coefficients are automatically
jointly specified and estimated. An alternative-presented
here as Identification Based Modeling, or IBM— would be
to clearly divide the mathematical specification of the
CDA regression equation from the econometric estimation
phase of the DSM measurement task. (IBM has been
referred to previously as Simplified Conditional Demand
Analysis. See Schiffman et al. 1993, and Schiffman and
Engle 1993.) This division (depicted in Figure 1) creates
an opportunity to first identify the theoretical role (within
the DSM setting) of each specified regression coefficient
before the task of estimation is begun; carefully doing so
will go far in reducing the drawbacks of CDA, by elimi-
nating the estimation of regression coefficients that are
unneeded within the DSM measurement setting. In con-
crete terms, it will be shown that when the central task
within the DSM setting is to estimate customers’ DSM
savings for (say) a single end-use such as lighting, it is

unnecessary to estimate customers’ consumption for each
end-use (lighting, space cooling, space heating, ventila-
tion, water heating, cooking, etc.), provided that role of
each regression coefficient is carefully identified before
the estimation phase is begun.

In summary, although IBM share CDA the same mathe-
matical structure for the regression equation, they differ in
their treatment of individual regression coefficients during
the estimation phase of the DSM measurement task. As a
result, it is important to compare the performance of these
alternatives within the estimation phase. During 1993 San
Diego Gas & Electric Company (SDG&E) performed a
large-scale computer simulation study (a Monte Carlo
study), based on an agreement with California Public
Utility Commission. The study was designed to system-
atically compare the fundamental properties of CDA and
IBM as DSM measurement tools. The results of this study
demonstrate that under the best of conditions—where the
regression equation is correctly specified and customer-
specific data are available— IBM performs as well as CDA
in estimating DSM savings, with far fewer data require-
ments. 3 Additional results show that when the regression
equation is misspecified or when data are collected with
errors, IBM significantly outperforms CDA as a tool for
DSM measurement. These result will be presented here,

Figure 1. Conditional Demand Analysis Versus Identification Based Modeling
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once the theoretical differences between CDA and IBM are
established in forthcoming sections.

A Comparison of
Demand Analysis
Based Modeling

Conditional
and Identification

Specification of a Simple CDA Regression
Equation (with No DSM)

Although it is far simpler than CDA regression equations
that are generally specified in normal commercial applica-
tions, the following regression equation will serve well in
both the theoretical discussion of CDA versus IBM and the
portion of this paper containing the Monte Carlo results:

The regression equation has monthly electricity
consumption for customer j during month t (KWHjt) as the
dependent variable. Given a simple three end-use setting
with interior lighting, cooking (selected arbitrarily), and
space cooling, there are three regressors (independent
variables) on the right-hand side, each contained in square
brackets. In turn, these regressors are based on:

SQFT j    =

HRS j    =

DCOOK j    =

BC j    =

CDD jt    =

building square footage for customer j,

monthly lighting hours-of-operation for
customer j,

a dummy variable which equals “1” when
customer j has cooking (“0” otherwise),

a factor representing the individual build-
ing characteristics for customer j, and,

cooling degree-days for customer j during
month t.

The regression coefficients are LIGHT , COOK , and
SPCOOL .The coefficient LIGHT is to be interpreted as
lighting watts per square foot. 4 Cooking consumption

COOK is simply a constant for those customers that have
cooking. Space cooling is related to building character-
istics BCj (space cooling efficiency, wall/window/roof
characteristics, etc.) and a weather variable CDDjt;

SPCOOL is a statistical adjustment factor. 5

Specification of the CDA Regression
Equation (with Lighting DSM)

If DSM lighting measures are installed within a portion of
customers’ facilities, the CDA regression equation
becomes:

KWH it = right-hand side of Equation (1)

(2)

where SQFTAFFj is the square footage that is affected by
the lighting change (SQFTAFFj < SQFTj), and DDSMjt

is an econometric dummy variable which equals zero
before the lighting change for customer j, and one there-
after. It follows that DSM is the change in watts per
square foot of affected space.

Identification of Regression Parameters:
M-Identification and E-identification

To this point, the term “identification” has been used
without definition. Consider two separate terms:
M-identification and E-identification. M-identification will
be a loose concept based on whether the coefficient is
simply important (iMportant) considering the goal of the
regression analysis. E-identification will be based on the
formal notion of econometric (Econometric) identification.

M-Idenlification (of a regression parameter): The regres-
sion parameter is important considering the goal of the
regression analysis.

E-Identification (of a regression parameter): The inde-
pendent variables of the regression are sufficiently struc-
tured so that the least-squares estimates of the regression
coefficients are available.

It follows from the definitions that if a regression coeffi-
cient is M-identified, it must also be E-identified if least-
squares estimates of the coefficient are to be obtained.
However, if a parameter is not M-identified, it need not be
E-identified. The usefulness of this will now be made
plain using Equations (1) and (2).

Conventional CDA: Identification and
Estimation

CDA was originally developed with the goal of disaggre-
gating customers’ energy consumption into its end-use
components (see Parti and Parti 1980). If this is the goal
of the regression analysis, by definition LIGHT, COOK,
and SPCOOL of Equation (1) are M-identified, and must
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therefore be E-identified. This implies that there must be
sufficient variation in all the regressors of Equation (1), so
that the final data requirements for CDA are:

Within the DSM setting the data requirements are
expanded, given that DSM of Equation (2) is now to be
M-identified:

IBM: Identification and Estimation

If it is not the goal of the regression analysis to
disaggregate customers’ energy consumption into its end-
use components, but rather the goal is to estimate DSM
savings, it follows that only the coefficient DSM of
Equation (2) is M-identified.

There are clear advantages in recognizing this fact. Each
of the regression coefficients that are not M-identified
( n a m e l y  L I G H T , C O O K, and SPCOOL) are associated
with regressors that contain factors which do not depend
on time; these factors appear in
Equations (2)-(5). This establishes the
specific coefficients:

square brackets in
following customer-

This reduction in data requirements stems directly from
the identification issue. For example, SQFTj is required
with the CDA setting, since it is only variation in which
m a k e s  L I G H T E-identified. By contrast, in the DSM
measurement setting LIGHT is not M-identified, which
eliminates the need for variation in SQFTj. (Note that it is
the variation in DDSM jt that makes DSM E-identified.) In
practice, the data elements {HRSj, SQFTAFFj, DDSMjt}
would most likely be a part of the data-collection effort
for any well established DSM commercial lighting pro-
gram, while this would not be the case concerning the
elements that have been eliminated, namely the CDA data
requirements {SQFTj, DCOOKj, BCj].

Second, while in Equation (6), the coefficients LIGHT,

COOK, and SPCOOL are not E-identified, neither are they
M-identified within the DSM measurement setting; DSM,
of course, is both M-identified and E-identified. As a
result, we see the fundamental difference between CDA
and IBM: IBM will not yield estimates of the end-use
components of consumption (as will CDA, if successfully
applied) although it will yield estimates of DSM savings
with fewer data requirements and a smaller degree of
mathematical specification.

Of course, Equation (6) contains two sets of customer-
specific coefficients: Bj and BSPCOOL,J, j = 1,.. .J (in the
case of J customers). To finally estimate the 2J + 1 regres-
sion coefficients, the exact form of the regression Equa-
tion would be (with a complete specification of the
regressors):

It follows that Equation (2) can be rewritten as,

whe re ,  B j = BLIGHT j + BCOOK j.,

Equation (6) represents the final regression equation that
is to be estimated under IBM. Note its fundamental prop-
erties. First, the data requirements have been reduced by
{SQFT j, DCOOKj, BCj}:

where Djt is a
KWH it is contr

dummy variable which equals one when
ibuted to the regression by customer j, and

zero otherwise. While constructing the 2J dummy vari-
ables of Equation (7) may require significant computer
memory if J is large, modern hardware and software tools
are generally sufficient. SAS PROC GLM, for example, is
especially suited for constructing large numbers of dummy
variables. The SAS code that would be written in order to
estimate Equation (7) would resemble:

PROC GLM;
MODEL KWH = CUSTOMER CUSTOMER*CDD

SQFTAFF*INVIOOO*HRS*DDSM;
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where the above variable names are based on the elements
of Equation (7). The “CUSTOMER” and “CUSTOMER*
CDD” portions of the code will yield estimates of the J
customer-specific intercepts and the J customer-specific
weather coefficients, respectively. The “INV1000*
SQFTAFF*HRS*DDSM” portion of the code will gener-
ate an estimate of the single coefficient DSM. Once the
IBM framework is viewed in this way, another point of
view becomes clear: Estimating Equation (7) amounts to
estimating J customer-specific regression equations, sub-
ject to the restriction that the single regression coefficient
for “INVIOOO*SQFTAFF*HRS*DDSM” is the same
across customers. As a result, modeling restrictions have
been minimized.

Testing the CDA Framework

In summary, IBM minimizes the constraints on regression
coefficients that are present when CDA is applied. If
within the setting of DSM measurement a choice must be
made between CDA, with its heavy constraints on regres-
sion coefficients, and IBM, a less constrained framework,
the natural course of action would be to formally test the
constraints that are present within the CDA framework.
Suppose, for example, t h a t  S P C O O L  a n d  C O O K  o f
Equation (1) may vary across customers, in which case
there exists a set of coefficients SPCOOL,J and COOK,J,  j
= 1,.. .J. Then one view is that CDA yields estimates
under the joint hypotheses H0-SPCOOL and H0-COOK:

The hypotheses H0-SPCOOL and H0-COOK could be
tested quite easily. The Lagrange Multiplier (LM) statistic
(See Engle 1984) would function well as a test statistic
in this case, since it depends only on estimates derived
under the null hypothesis (i. e., the CDA regression
estimates). Constructing the LM statistic would simply
involve regressing the residuals from the CDA regression
on a set of customer-based dummy variables (in addition
to the original CDA regressors); based on this regression,
the LM statistic could be calculated as: LM = (# observa-
tions) x R2 If the LM statistic is “large” (compared to.
the appropriate Chi-square value) the null hypothesis
would be rejected. (The simple intuition is that when
the null hypothesis is false, the customer-based dummy
variables which are not in the CDA regression equation
end up in the disturbance term, and the least-squares
residuals should reflect this.) If the hypothesis is
rejected, the regression coefficients of H0-SPCOOL and
HO-COOK should be estimated at the customer level, as in
IBM.

In general, the added flexibility of IBM becomes clear if
we note that if either H0-SPCOOL or H0-COOK is false,
only the right-hand side of the Equations (4) and (5)
would be altered; the regression Equations (6) and (7)
would maintain their present structure. For example, using
IBM, the least-squares estimate of BSPCOOL,J would be an
unbiased estimate of either SPCOOL[(BC J x SQFTj)], when
is true, or SPCOOl ,j[(Bcj xSQFT j)], when H0-SPCOOL is
false.

The Monte Carlo Study

Description. In 1993, SDG&E applied to the California
Public Utilities Commission for an exemption the
California DSM measurement protocols. The protocols
require estimates of the end-use components of customers’
electricity consumption; the company’s application was
based on its success in applying IBM to its commercial
lighting retrofit program.

To support its application, SDG&E offered to undertake a
Monte Carlo study to compare the performance of conven-
tional CDA and IBM. A Monte Carlo study is a computer-
based study that simulates the application of these alterna-
tive techniques to actual data. In general, Monte Carlo
methods have been used extensively in Economics, Busi-
ness, and Statistics for many years. In 1984, the
Handbook of Econometrics surveyed the applications in
economics (see Hendry 1984), although the list of such
studies is much longer today. These methods are now
becoming so computationally inexpensive that they are
often advocated as a companion to econometric model
building. The company’s proposal to undertake a Monte
Carlo study was finally sanctioned by the CPUC in May
of 1993 (CPUC decision D.93-05-063). The main results
are given here. Details can be found in Schiffman and
Engle 1993.

The computer simulated “world” of the Monte Carlo study
provides several advantages. First, this world can be
duplicated at will, so that issues such as which DSM
measurement technique should be adopted can be analyzed
under a variety of conditions; the “real world” takes place
only once. Second, in the real world, the true numerical
value for that item which is being estimated (e.g., energy
savings from a DSM program) is unknown; as a result,
there is no known standard by which alternative analytical
tools can be judged. In a Monte Carlo study, a known
value for the item which is being estimated can be built
directly into the computerized framework, and alternative
analytical tools can be judged in terms of their ability to
detect this known value.

The Monte Carlo study was based on specifying the
numerical values for each element of Equation (2), for a
hypothetical group of 120 (J = 120) customers that would



Schiffman — 7.218

form the basis for separate CDA and IBM analyses.
Although Equation (2) is relatively simple, it is complex
enough to test whether adding the constraints that are
present in the CDA framework (together with the data that
are required to support these constraints) adds accuracy to
the regression analysis, relative to IBM.

The overall study was based on simulating one thousand
pairs of analyses (each pair being one CDA analysis and
one IBM analysis); each pair is said to constitute one
“iteration” within the study. With each iteration, each
customer is randomly assigned new values for {SQFTj,
HRSj, DCOOKj, CDDjt, SQFTAFFj, DDSMjt} (BCj was
suppressed). The weather variable CDDjt (which naturally
varied from month to month, across 36 months) was also
changed with each iteration. Most important, each itera-
tion contained new values (across customers and time) for

ness of the disturbance term which obfuscates the underly-

ing structure of the regression equation, so that the
alternative DSM measurement methods (CDA and IBM)
can be compared in terms of their ability to overcome this
element of the model. The overall numerical specification
is described in Table 1.

Based on Equations (1) and (2), and the specifications in
Table 1, a typical customer who has cooking should be
expected to consume approximately 33,000 kWh per
month (after the lighting change):
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The example in Equation (8)—which serves only as a
check on the reasonableness of the model—points to a
breakout of monthly consumption of roughly three-fourths
for lighting (before the lighting change), one-fifth for
space cooling, and about 5% for cooking. In light of these
specifications, the study can generally be thought of as an
analysis of medium-sized office buildings. Note that the
two lighting coefficients imply a two-thirds reduction in
watts per square foot (1. 84/2.76 = 2/3); these numbers
are consistent with an aggressive commercial lighting
retrofit program that focuses on delamping and relamping.

Results. A series of 1,000 computer simulations were
run based on the numerical specifications of Table 1. In
particular, weighted least-squares estimates of the parame-
ter were obtained for both the CDA specification of Equa-
tion (2) and the IBM specification of Equation (6); the
weights of the regressions were based on estimates of the
error-variances,

Figure 2 gives the results of the 1,000 iterations in the
case where the regression equation is correctly specified
(that is, when the regression equation that is specified in
the estimation phase is, in fact, Equation (2)). Not
surprisingly, both estimators are obviously unbiased, since
each distribution has a mean estimate for DSM of very
close to -1.84 watts. More important, it is clear that the
two estimators are extremely close in terms of accuracy.
The two distributions are virtually congruent, although the
tails of the IBM distribution are slightly more pronounced;
the standard deviation of the CDA distribution (0.011) is
80% of the standard deviation of the lBM S-CDA distri-
bution (0.014). This is an important result in light of the
fact that the IBM estimator does not depend on the data
elements {SQFTj, DCOOKj, BCj}. In other words, the
added accuracy that would, in practice, be associated with
these data elements is minimal. Moreover, this small
degree of added accuracy is predicated on the accuracy of
these data elements (e.g., Can the square footage of a
building be consistently and accurately measured?), and
the exact mathematical specification of the of the CDA
equation. We can now consider the properties of the two
estimators under conditions of data-collection errors and
modeling misspecification.

It is well known that when regression models contain
regressors for which data are collected with errors, the
resulting errors-in-variables bias will impact the esti-
mation process, and that parameter estimates will tend to
be biased toward zero. Figure 3 shows the results for the
CDA and IBM models in a simulated case of errors-in-
variables bias (based on an additional 1,000 iterations
of the model). The results are based on the case where,

Figure 2. Monte Carlo Results: The Distribution of
Estimation Results from 1,000 Iterations, when the
Regression Equation is Correctly Specified During
Estimation

during the data-collection and estimation phases, the
regressor SQFTj is overestimated or underestimated by
0-20% (this implies that the building square footage on
average will be recorded correctly, but in any one instance
will be recorded with error by at most 20%). Figure 3
shows the significant errors-in-variables bias that is
associated with the CDA estimator in this case, as well as
a dramatic decrease in accuracy. (The resulting estimates
are clearly biased toward zero away from the true value
for the measure savings parameter DSM, -1.84 watts.)
Most important, it is clear in Figure 3 that since Equation
(6) does not depend on SQFTj, the IBM estimator is
unaffected by the data collection errors. An alternative
view is that the weighted least-squares estimate of the
customer-specific space cooling coefficient in Equations
(5) and (6) will certainly constitute an efficient, unbiased
estimate of SPCOOL[(BC J X SQFTj)] regardless of the data
errors, since the regressor itself does not depend on
square foot-age. In short, the customer-specific coefficient
implicitly “collects” data on square footage data. In
general, these results support the notion that the cost of
estimating the individual end-use elements that are
contained in Equation (2) will most likely be a substan-
tial errors-in-variables bias and a significant decrease in
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Figure 3. Monte Carlo Results: The Distribution of
Estimation Results from 1,000 Iterations, when Square
Footage is Over/Under Estimated by 0-20% During
Estimation

accuracy. Note, also, that if a CDA regression equation
more complicated than Equation (2) were specified, there
would be an even greater chance for errors in data
collection.

Problems can also occur when the regression equation is
mathematically misspecified. Figure 4 shows the results
(based on an additional 1,000 iterations) of omitting the
cooking end-use during the estimation phase of CDA. The
variance of the C-CDA estimator is clearly dramatically
increased, although the associated bias is not conspicuous
(undoubtedly due to the small consumption that is associ-
ated with this end-use). It is also clear that since the IBM
Equation (6) does not depend on the cooking indicator
DCOOK j, the accuracy of the IBM estimator is unaffected
by the misspecification. Once again, an alternative view is
that the weighted least-squares estimate of the customer-
specific intercept Bj in Equation (6) will certainly
constitute an efficient, unbiased estimate of BLIGHT,j +
COOK[DCOOK j], regardless of the misspecification,
since the regressor itself does not depend on DCOOK j. In
short, the customer-specific intercept implicitly “collects”
data on cooking. These results show that the accuracy of
CDA is significantly impacted by misspecification error.
Note again that if a CDA regression equation more
complicated than Equation (2) were specified, there would
be an even greater chance for misspecification.

Figure 4. Monte Carlo Results: The Distribution of
Estimation Results from 1,000 Iterations, when a Minor
End-Use is Omitted from the Regression Equation
During Estimation

Windfall Estimates from IBM

The intuitive notion associated with IBM is that it is not
necessary to estimate the level of energy consumption by
end-use when the fundamental task is to estimate the
change in consumption for, say, a single end-use. Why,
for example, should the analyst estimate the level of
cooking consumption in commercial office buildings if the
basic task is to estimate the change associated with
lighting retrofit work? Given IBM it is clear that changes
is energy consumption for a particular end-use can
generally be estimated without estimating the level of
consumption for that end-use or others.

However, SDG&E has found some unexpected benefits in
applying IBM which pertain to estimating the level of
lighting consumption. To understand these benefits,
imagine a simple case where a commercial lighting retrofit
program is based on a single lighting measure, that of
delamping (removing) 4-foot fluorescent lamps from
lighting fixtures; the typical case could be one where one
lamp is removed from every 4-lamp fixture. In this case,
based on the results presented here, it is clear that IBM
could produce estimates of the energy savings from
delamping, and that these estimates could easily be
constructed on a per-lamp basis. Yet this delamp estimate
could just as well serve as an estimate of the energy
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consumption for the remaining lamps (for the three
remaining lamps per fixture, given the typical case just
described). In other words, in the case where for a
particular end-use a DSM measure involves removal (as in
delamping), the level of consumption can be estimated
given information concerning the relationship between the
level of consumption and the DSM measure. As an
example of this, in applying IBM to its commercial
lighting retrofit program SDG&E first carefully defined a
detailed set of DSM lighting measures (based primarily on
lamp/ballast combinations) and, as in the above example,
a subset of these measures were associated with delamp-
ing. SDG&E has shown how the delamping estimates can
be used to estimate the level of lighting consumption for
commercial sites (see Schiffman et al. 1994).

Summary and Conclusions

Conditional Demand Analysis (CDA) is certainly an
appropriate technique when the task is to disaggregate
commercial customers’ energy consumption into its end-
use components. However, when the task is to estimate
the impact of DSM measures for (say) a particular end-
use, there are advantages in using Identification Based
Modeling (IBM). IBM (which begins with the mathemati-
cal specification for the regression equation that is found
in the CDA framework) allows for a careful consideration
of the issue of parameter identification before the final
form of the regression equation (the regression equation
that is to be estimated) is established. The value of
identification lies in significantly reduced data require-
ments, and a lower susceptibility to data-collection errors
and errors in mathematical specification.
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Endnotes

1.

2.

For an overview of CDA, see Parti and Parti 1980,
Lawrence and Parti 1984, Sebold and Parris 1989.

Referring to CDA as a “pure econometric approach,”
Regional Economic Research 1991, has stated
“Because of the complexity of commercial building
systems and the diverse nature of occupant behavior,
the pure econometric approach does not work for
commercial sector applications. ”

3.

4.

5.

The results that will be presented here are actually a
subset of a larger set of results (see Schiffman and
Engle 1993) that have led the California Public Utili-
ties Commission to approve a temporary (partial)
exemption from the California measurement protocols
for SDG&E (CPUC decision D. 93-10-063, May 19,
1993).

In reality, watts per square foot will not be constant
across customers. A more realistic application of IBM
would be to clearly define a set of lighting “measures”
whose watt-savings could be viewed as constant. See
Schiffman, et al. 1993, for such an application.

The regression equation could be viewed as containing
a lighting/space-cooling interaction if lighting hours
were contained within space cooling hours-of-
operation and space cooling was of sufficient duration.
The original study also contained terms for heat gain
from building
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