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Providing confidence intervals on savings estimates is becoming increasingly important as demand-side
management (DSM) impacts grow. System planners want to know how much savings they can count on realizing.
Regulators may want to know the probability that a program is not cost-effective. Cost-effective allocation of
evaluation resources requires knowledge of the potential reduction in savings-estimate variance relative to the costs
of various techniques.

Engineering savings estimates have important functions in DSM planning, program design, and program
evaluation; however, they are typically presented as point estimates without confidence intervals. A method of
estimating confidence intervals around estimates from engineering algorithms within the context of DSM has been
previously presented. Quantifying the uncertainty of engineering models has a long history in the field of
instrumentation systems. This paper discusses an application of this approach to engineering simulation estimates.

The analysis of a case study in the paper shows that only a few of the inputs to the estimation of savings contribute
significantly to error in the estimate. The results can used be to quantify the value of information being collected,
and to redesign data collection to optimize resource expenditures.

Introduction

Calculating confidence intervals on savings estimates
is becoming increasingly important as DSM impacts
grow larger. System planners want to know how much
savings they can count on realizing. Regulators may want
to know the probability that a program is not cost-
effective. Cost-effective allocation of evaluation resources
requires knowledge of the potential reduction in savings-
estimate variance relative to the costs of various
techniques.

Engineering savings estimates have important functions in
DSM planning, program design, and program evaluation;
however, they are typically presented as point estimates
without confidence intervals. A method of estimating
uncertainty around estimates, using error propagation
analysis, from engineering algorithms within the context
of DSM has been previously presented by Kiefer (1993)
and, more generally, by Hummel (1993). Quantifying the
uncertain y of engineering models has a long history in the
field of instrumentation systems (Dieck 1992). This paper
discusses an application of this approach to engineering
simulation estimates.

Discussion of Terms

Before going further in this discussion, it is useful to
define five concepts related to conducting an error
propagation analysis: (1) value of information, (2) cost of
information acquisition, (3) propagation error, (4) meas-
urement error, and (5) model error.

Value of information can be defined as function of both
the magnitude of the error resulting from imperfect
information and the cost of the uncertainty that the error
produces. The greater the error or the greater the cost of
uncertainty, the more valuable the information. Error
propagation analysis is a way to estimate the magnitude of
the error. The cost represented by that error has three
possible components: (1) the cost of supplying the
additional generating capacity necessary to ensure that the
peak demand is met because of the uncertainty in the
DSM savings estimate, (2) the cost of continuing to fund
measures or programs that may not be cost-effective, and
(3) the lost opportunity cost of failing to implement
measures that might be cost-effective. The use of value of
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information models in DSM planning is discussed in
several reports (Swift 1987; Violette et al. 1992; McRae
et al. 1992), although the practical applications of such
models have been limited, as pointed out by Hummel
(1993).

Cost of information refers to the cost of data acquisition
required to reduce the error in the impact estimate. This
could be the cost of metering, for example. If the cost of
the information acquisition is less than the value of that
information, then that information is worth acquiring.

Propagation error is the error in the impact estimate that
is a function of individual measurement errors in inputs. It
is distinct from model error, which is due to misspecifica-
tion or omitted terms.

Error propagation analysis provides the basis for compar-
ing the contribution of error of various inputs, and for
assessing the variance reduction potential of different data
collection techniques.

Measurement error is inherent in developing any type of
input. The measurement techniques used to develop simu-
lation model inputs include surveys, audits, and end-use
metering. The errors associated with these measurement
techniques can be random or systematic. Random errors
are associated with both sample-based population estimates
and individual estimates.

Random errors that occur when some type of sampling is
used to develop a population estimate, as is often the case
in residential impact estimates, can be calculated through
standard statistical techniques. Sampling error is a func-
tion of the standard deviation of the variable of interest
and the number of data points in the sample. It is reduced
as sample size increases; hence a telephone survey is
likely to have smaller sampling error than an on-site
survey. Standard errors can be calculated for each vari-
able, based on the number of observations associated with
that variance.

Individual measurement errors occur when individual
impact estimates are developed. This may be the case in
commercial program impact estimates, where estimates
are developed on a case-by-case basis. If, for example, an
estimate of savings for each participant in a commercial
lighting program is based on a questionnaire response to
what the hours of lighting are, the random measurement
error for each individual is likely to be high. Calculation
of the error requires that additional information be used,
such as data from a more precise measuring tool be used,
such as end-use metering. The standard deviation of the
ratio between the less-precise and more-precise estimates
for a sample will be the individual measurement error.

Systematic measurement error results from a tendency for
an estimate to be biased. Such a bias, in the case of
estimates of hours of operation for lighting, for example,
could be the result of building owners not accounting for
lights being on while the janitorial service cleans the
building. This type of error, as with random measurement
error for an individual estimate, can be detected by using
a better measurement tool such as an on-site audit to
measure insulation values rather than a telephone survey,
or end-use metering to measure operating hours rather
than a participant questionnaire.

Model error is inherent in any type of model, even with
perfect information, to the extent that the model does not
accurately reflect the response of interest. For example,
simple steady-state heat transfer algorithms based on
degree-days produce significant errors even with perfect
inputs because of the simplified, or missing consideration
of dynamic interactions between thermal mass, solar and
internal gains, and system and occupancy behavior. More
detailed models are likely to have less model error. As
mentioned previously, model error is distinct from
propagation error, and is beyond the scope of this paper.

Calculation of Propagation Error and
Confidence Intervals

The error of an engineering savings estimate is a function
of the response of the estimate relative to the input
parameters and the error in the input parameters. For an
engineering model, assuming that the algorithm is
unbiased and the errors are independent, the terms can be
combined as shown in Equation (1) (American Society of
Heating, Refrigerating, and Air-Conditioning Engineers
1991; Dieck 1992):

The partial derivatives shown in this formula can be
thought of as the sensitivity of the result with respect to
each input. For the engineering estimates based on
algorithms such as those used for lighting and motor
measures, these partial derivatives are relatively easy to
calculate directly.

If a complex simulation model is used, the derivatives
must be estimated through parametric runs of the model.
Calculating these derivatives is known as “dithering”
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(Dieck 1992), and this procedure is used for estimating
the propagation error of problems that have no closed
form equation. Spitler et al. (1989) discussed the
calculation of partial derivatives, or influence coefficients,
using the BLAST simulation model. The approach
involved perturbing the parameter of interest and dividing
the change in the result by the change in the parameter, as
shown in Equation (2):

where: IC = influence coefficient, or estimated partial
derivative

b = base value of parameter
∆ p = the perturbation.

The units on this derivative are the units of the result
divided by units of the parameter. Spitler discusses other
forms of influence coefficients, including nondimensional
types.

If the result of interest is an energy savings estimate, it is
calculated as the difference in two simulation runs: one
before the installation of the energy efficiency measure
and one after the installation, as shown in Equation (3):

(3)

savings estimate is a normally distributed variable, by
assuming the relationship shown in Equation (4):

where: X =
x l, x2 =

Z =

z =

the actual savings
the lower and upper bounds of the
confidence interval
the normal random variable with mean
zero and variance 1

estimate.

The confidence interval expressed as a fraction of the

calculated as shown in Equation (5):

For a 90% confidence interval, using a two-tailed test,
Z = 1.65.

Case Study: Ceiling Insulation
Savings

As a case study, we calculated the propagation error and
confidence interval in an estimate of residential ceiling
insulation annual cooling energy savings in a typical,
single-family house with central air conditioning in a
warm climate. We modeled the gross savings estimate for
improving the ceiling insulation level from no insulation to
a nominal R-19 using the DOE-2.ld simulation model
(Lawrence Berkeley Laboratories 1992). DOE-2.ld
simulates hourly heating and cooling loads imposed on
buildings from ambient temperature, solar and internal
gains, and other sources, and calculates the energy
required for space conditioning to meet these loads and
those of other end-uses in the building. The baseline
estimate of savings was 823 kWh per year. Error
estimates were calculated from audit data. There were
three steps in the process: (1) identification of key
parameters, (2) estimation of errors in key parameters,
and (3) calculation of influence coefficients and propa-
gation error.

Identification of Key Parameters

There are hundreds of inputs in to a simulation model as
complex as DOE-2; however, typically only of few of
them are significant. Time and resource constraints will
usually dictate that calculation of the propagation error
and confidence intervals include only the significant vari-
ables, Expert judgment is required to select the variables.
Although omission of other variables will cause the error
estimate to be biased low, the results presented here indi-
cate that such biases are not likely to be significant.

In this ceiling insulation example, we thought that the
following inputs might be significant: (1) insulated ceiling
area, (2) base case ceiling R-value (including framing and
drywall), (3) added ceiling R-value, (4) window area,
(5) shading coefficient, (6) glass conductance, (7) wall
insulation level, (8) internal loads, (9) cooling system
setpoint, (10) cooling capacity, and (11) cooling system
efficiency.

Estimation of Errors in Key Parameters

We used audit data as the basis for most of input values
and calculation of standard errors in the inputs. Standard
errors were calculated as the sample standard deviation of
the value. The standard error reflects uncertainty due to
both the inherent or natural variation in the parameter of
interest and the random error in the measurement tool,
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i.e., the audit. As was discussed previously, systematic
error in the audit procedure cannot be ascertained without
the use of some type of more detailed measurement tool.
Values for some inputs were not included in the audit
data; for these cases we used available point estimates for
the inputs and estimated the standard errors using
judgement. Table 1 presents the baseline input values, the
standard errors, the coefficient of variation, and whether
the errors were based on each input.

We also calculated the covariances of inputs, when pos-
sible, since a key assumption in the use of Equation (1) is
that the errors are unbiased. We did not find any signifi-
cant covariance between terms.

Calculation of Influence Coefficients and
Propagation Error

We calculated the influence coefficient for each key input
by perturbing the simulation model over the range of the
standard error and using Equation (3). Using Equation
(l), and substituting the influence coefficients for the
partial derivatives, we calculated the error in the savings
estimate. The total error of the estimate is 277 kWh.
Using Equation (5), the 90% confidence interval was
calculated as shown in Equation (6) below:

We also calculated the contribution each input to the
overall error (Cp), as shown in Equation (7) below:

Three inputs contributed 90% of the overall error:
(1) cooling system efficiency, (2) base case existing
ceiling R-value, and (3) insulation ceiling area.

No other input contributed more than 3% to the overall
error.

Table 2 presents the influence coefficient for each input,
the error in the result, and the contribution of each input.

Discussion

Based on the assumptions made in this case study,
uncertainty in the engineering estimate of ceiling
insulation is dominated by 3 of the 11 inputs evaluated.
Baseline insulation levels and air conditioner efficiency
contribute by far the greatest amount to error, and ceiling
insulation area was also significant. Efforts to reduce error
and increase precision would be most fruitful if they
focused on these inputs. Careful recording of baseline
insulation levels is often not included in performance
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tracking systems: this analysis indicates the value of doing improved information would not be worthwhile, even
so. (In this particular case, the baseline insulation level is
not likely to be less than the baseline input, since that
value is based on the assumption of no insulation, but
there may be cases where the baseline insulation is greater
than zero.) More audits or field tests to reduce the
sampling error associated with air conditioner efficiency
may be in order. Extra care should be taken that the
tracking of ceiling insulation area is precise. Tracking of
other information such as internal gains appears to be
significantly less worthwhile.

This type of analysis could be extended to estimate the
uncertainty of net impact estimates by using simple
algorithms to incorporate free rider, free driver, and
takeback estimates (Jacobs et al. 1993). Such an extension
would be useful if the technique is being used to help
allocate evaluation resources, since those inputs may
contribute significantly to the net savings estimate
uncertainty.

The cost of collecting such information must be weighed
against the value of information gained. If the value of
variance-reducing information is known, comparison of
the costs of various data collection techniques with the
value of information produced by those techniques can be
used to determine an evaluation budget. If, for example,
the cost of field testing air conditioners substantially
outweighs the value of the improved information, such

though it substantially reduces the uncertainty of the
estimate.

Conclusions

This paper has presented a technique for calculating the
error in a simulation estimate and the confidence interval
around the estimate. A simple example was presented. In
this example, we found that only three out of 11 inputs
contributed significantly to the error. Such findings can be
used to help allocate future evaluation resources.
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