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ABSTRACT 
 
The failure of business and industry to adopt profitable energy-saving innovations 

and the apparent ability of some businesses to transform environmental concerns into a 
competitive advantage are just two of the instances of firm behavior that are not captured in 
standard economic policy models. Indeed, the evidence is mounting that the typical economic 
description of business behavior ― in which firms are assumed to follow strict principles of 
profit maximization subject only to a production function and budget or regulatory 
constraints ― is ready for transformation.  

The conventional theory of corporate behavior is challenged by a wide range of 
phenomena that range from capital budgeting and technology choice to transaction costs, 
market uncertainty, and organizational structure. In this paper we will explore alternatives to 
the pure maximization approach that have been suggested in the literature on the behavior of 
firms. In particular, we show how an evolutionary perspective can lead naturally to dynamic 
models that exhibit the kind of open-endedness that actually characterizes the real world. 
This, in turn, may highlight the opportunities that encourage or accelerate the adoption of 
profitable energy innovations within industrial firms. 

 
Introduction 

 
The proper characterization of technology and how its performance changes over 

time are both critical elements of energy modeling. Equally important, however, are the 
behavioral responses of individuals and firms. Before new technologies can be adopted firms 
must learn about them, and the investment process is mediated by the organizational 
structures that guide corporate decision-making and the flow of information. Brynjolfsson 
and Hitt (1996), for example, showed that the productivity gains from computerization could 
not be realized until firms reorganized to take advantage of the new information-processing 
technology. Yet the standard modeling treatment assumes that technology can be adequately 
represented by some form of a production function that transforms various commodity inputs 
into a given output.1 The behavioral assumption is limited to the highly abstract idea of profit 
maximization, an assumption that is largely unexamined in conventional energy-economic 
modeling.  

Although managers are very much concerned with the economic survival and 
profitability of their enterprises, their activities are not well described as the solving of the 
kinds of maximization problems that lie at the heart of most economic modeling exercises. 

                                                 
1 This is true whether technology is represented in specific technology choice models or in more stylized 
econometric or equilibrium models. 
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Managers do not primarily work with mathematical representations of their production 
processes or the availability of resource inputs. Instead, the most challenging elements of 
their jobs involve strategic planning, human relations, organizational design, and 
bureaucratic politics. While it is true that some elements of operations research (and more 
recently, mathematical finance) are important components of management expertise, these by 
no means embody the full set of tools that have been devised to enhance business leadership.  

It is not an adequate response to argue, as Friedman did in an influential 
methodological article in the early 1950s, that the details of management practices can be 
ignored because firms can be analyzed �as if� they conform to the profit-maximization 
paradigm (Friedman 1953). Friedman�s argument rests on an appeal to the selection 
pressures of evolution (i.e., if firms did not maximize profits they would be driven out of 
business), but in fact the evolutionary argument, while being correct in pointing out that 
market survival does require that firms earn positive profits, is not the same thing as an 
argument for optimization (Alchian 1950). Evolution is a non-teleological process, and the 
fact that it is never �finished� implies that evolving populations are always susceptible to 
improvement. The evolutionary outlook does offer insights into industrial dynamics (see 
below), but does not constitute justification for ignoring the nature of the particular activities 
undertaken by management. Rather than using the �as if� argument to avoid close 
examination of the activities and practices of firms, it is necessary, as Simon observed some 
time ago, to �make the observations necessary to discover and test true propositions�.Then 
let us construct a new market theory on these firmer foundations� (1963, p. 230).  

The modern theory of the firm has been developed in a number of disciplines. The 
technical literature spans the fields of economics, management science, sociology, and 
organization theory. No attempt will be made to survey that literature comprehensively here.2 
The significant point is that disregarding how firms actually operate can lead to 
misconceptions about both the likelihood that the firms will adopt profitable energy-saving 
technologies and the mechanisms by which policy can influence those decisions. The 
consequence of ignoring the modern theory of the firm is a pervasive bias in policy analysis 
that underestimates the potential for energy savings that are consistent with strengthening the 
economic performance of industrial organizations.  

 
Energy Policy Models and the Modern Theory of the Firm 

 
The heart of the production function/profit maximization story is the assumption that 

the firm is efficient. No stone is left unturned in the search for profits, and all investments 
that yield a return greater than or equal to the cost of capital for projects of comparable risk 
are undertaken. This view treats the firm as though it were a unitary entity capable of single-
minded pursuit of its formal objective � profitability for the shareholders. However, the 
�rationality of individuals� making up an organization does not easily translate into the 
�rationality of the organization� as a whole. The way the organization behaves depends on its 
decision-making procedures, or on how the preferences of the individuals who comprise it 
are aggregated to produce collective action. There are both theoretical and practical reasons 
to doubt that the behavior of groups has the same desirable qualities as individual rationality. 
Thus, Olson (1965) showed that the �logic of collective action� is such that groups will not 
                                                 
2 Some of the authors� own contributions, which include references to the wider literature, can be found in 
DeCanio (1993, 1994a, 1994b, 1994c, 1998, and 2000) and Laitner et al. (2000).  
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ordinarily generate outcomes that are optimal, and Arrow (1951) proved that there is no 
mechanism that can aggregate individual preferences into a collective decision rule that 
preserves the minimum requirements for individual rationality. The divergence between the 
interests of the individuals making up a firm and the formal profit-maximizing objective of 
the firm fall under several categories that more or less correspond to the observations of 
practical experience. These include principal/agent problems, issues of control, and 
limitations due to bounded rationality. We will discuss each of these in turn.  
 
Principal-Agent Problems 

 
This type of barrier to optimization arises because the members of any organization 

(and, in the case of business corporations, the employees and owners) are likely to have, at 
least to some degree, differences in interests. The shareholders of a firm are primarily 
interested in the firm�s net profitability. Because they can diversify their holdings by owning 
the shares of many different firms, even risk-averse shareholders would like the managers of 
the firms in the shareholders� portfolios to behave in a risk-neutral manner, seeking the 
highest expected return regardless of the risk associated with any particular projects. 
Working conditions experienced by the employees of the firm are of secondary importance to 
the shareholders because the employees (along with the capital, intellectual property, and 
other assets of the firm) are purely instrumental to the goal of maximum profits. The 
perspective of the employees is different. For them, working conditions, employment 
perquisites, and job security are as important as the rates of compensation or the quality of 
the benefits package. This leads to a potential conflict of interest between the shareholders 
and the employees.  

There is no easy way out of this conflict. The owners cannot be aware of all the 
information (from customers, suppliers, and internal to the firm) that is pertinent to efficient 
operation of the firm � that is why they hire mangers in the first place. The consequences of 
this �separation of ownership and control� were commented upon by Berle and Means in the 
1930s (1932).3 Given this asymmetric possession of information, the owners have no way of 
assessing whether the managers� decisions are self-serving or are based on information held 
only by the managers. For example, shareholders may be unable to ascertain the true rate of 
return on various investment projects available to the firm. This inability gives them a reason 
to set a �hurdle rate� for investments undertaken by the firm�s managers that is higher than 
the appropriate risk-adjusted cost of capital (Antle and Eppen 1985). If the principals (the 
shareholders) do not know the true rate of return on projects, they have no way of knowing 
how the profits generated are allocated between dividend payout (which is received by the 
principals) and management perquisites (including reduced levels of effort by the managers). 
Setting an artificially high hurdle rate for projects guarantees that (1) only highly profitable 
investments will be undertaken, and (2) the returns from the projects will accrue to the firm 
(because the managers must demonstrate ex post that the hurdle rate target has been met). 
This means that some profitable projects with rates of return below the high hurdle rate will 
be foregone, but the principals may judge that the resulting inefficiency is preferable to 
allowing the managers to appropriate the lion�s share of the profits earned by the projects that 
are undertaken. This is one possible explanation for the common observation that companies 
require extremely short paybacks (on the order of one or two years) and/or unreasonably high 
                                                 
3 But see also the earlier references in Jensen and Meckling (1976). 
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internal rates of return for even the simplest kinds of energy-saving investments. Lighting 
and motor system upgrades or right-sizing of heating, ventilation, and air conditioning 
systems are not technologically or economically risky, and there is no economic reason why 
such projects should have to meet high hurdle rates to be adopted.4 
 
Problems of Management Control 

 
Even if principal/agent conflicts of interest were not a problem, the modern complex 

organization would be difficult to manage in a profit-maximizing way. It is not a simple 
matter to coordinate the multifarious activities of the employees of a firm. A balance must be 
struck between giving instructions (and seeing that they are carried out) and reliance on the 
specialized skills and initiative of the individuals who contribute to production. It is not 
sufficient to issue a general directive to �maximize profits.� At the most basic level, it is 
difficult to know exactly how much any particular subunit is contributing to the overall 
profitability of a firm, and even more difficult to know each individual employee�s 
contribution. Compensation and other rewards need to be connected to performance, but the 
measurement of performance inevitably entails setting targets and standards that are 
measurable and concrete. In a complex organization, these standards may be only partially 
related to total profitability. 

Many of the functions of the organization are part of overhead and therefore cannot 
be tied directly to a particular profit center. Even if a group�s costs and returns can be 
separated from general returns in an accounting sense, the group may benefit (or suffer) from 
reputational or brand-name identification effects that are common to the whole organization 
(or to segments much larger than the team or group under review). The costs of the legal 
department, government relations, human resources, and capital management are not easily 
allocated across subunits.  

Instead of a general instruction to �maximize profits,� the members of the firm have 
to be given incentives to perform and measures by which their performance can be evaluated. 
The principals of the firm (whether shareholders or top management) are not entirely free in 
setting these objectives and evaluation tools, however, because the firm is embedded in the 
larger society�s labor and capital markets. The existence of a labor market means that the 
overall mix of compensation and terms of employment has to be competitive with that 
offered by other firms. At the same time, attracting and retaining quality employees offers 
one of the dimensions along which management ingenuity can pay off in terms of economic 
performance. The difficulties of balancing incentives and performance, central control and 
individual employees� discretion, and knowledge of operations without succumbing to 
�information overload,� are part of the reason management is such a demanding task, and 
why good managers are so highly compensated. If management entailed only the kind of 
maximization calculations expressed in conventional energy-economic models, the ideal 
manager would be a fresh college graduate who had done well in calculus. High-priced MBA 
programs would go out of business, and there would be no extensive displays of management 
self-help books in airport bookstores.  

                                                 
4 It should be noted that the discussion so far has been cast in terms of conflicts between shareholders and 
employees; the same reasoning applies to potential conflicts between different layers of management. Top 
management and middle management (as well as management and line employees) are plagued by the same 
information asymmetries and divergent incentives as the shareholders and �management� as a group. 
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Bounded Rationality 
 
So far, the discussion has assumed that the individuals making up the firm are 

perfectly rational, but that the necessity of their taking collective action to make the 
organization work is a potential source of sub-optimality. This assumption of perfect 
rationality on the part of the individual agents is itself suspect. Herbert Simon first drew 
attention to the fact that individual agents are only boundedly rational, that is, they do not 
have unlimited information processing and computational capabilities.5 The result is that 
individuals �satisfice� rather than optimize. Recently, some economists (and others) have 
questioned whether the traditional economic dimensions are adequate to capture key 
elements of behavior even in a market setting. This has led to a proliferation of work on 
�behavioral economics,� �behavioral finance,� and the like.6 These inquiries start from 
experimental evidence in psychology, sociology, and economics that runs counter to the way 
homo economicus is �supposed� to behave, and attempts to derive models that are consistent 
with what is known about individual behavior.  

Furthermore, the fact that firms take actions only in accordance with their own 
internal rules of procedure and decision-making processes places additional limitations on 
the kinds of outcomes that will be observed. The firms� rules and procedures are often 
complex, and are adhered to for non-economic reasons (such as maintaining hierarchical 
power relationships or satisfying cultural preferences). In addition, full optimization by firms 
would require very high-quality forecasting of future events that are essentially impossible to 
predict. Thus, the criterion that a profitable investment must have a positive expected net 
present value requires forecasting cash flows and costs far into the future. Both streams are 
subject to the uncertainty of future prices, and the expected revenues typically depend on 
macroeconomic or aggregate demand conditions as well. Even requiring that the firm�s 
forecasts take account of all the information available (a minimum requirement for the kind 
of �rational expectations� posited in many economic models) imposes an insuperable 
computational burden (Spear 1989; DeCanio 1999).  

Nor are the difficulties inherent in forecasting the only source of bounded rationality 
in the firm�s calculations. Many modern management problems, such as inventory control, 
production scheduling, and organizational design can be solved only approximately using 
reasonable amounts of computational resources and time (Garey and Johnson 1991; 
Papadimitriou 1996). Any time the decision-making of a firm must be mediated by some 
kind of communications network (because it is too costly or difficult for all members of the 
organization to be simultaneously in touch with all others), the question arises of what the 
optimal network structure might be, and finding that structure can be extraordinarily difficult. 
Managers constantly must wrestle with the problem of how best to organize activities, and 
significant amounts of time within organizations are devoted to meetings, memos, and other 
mechanisms for the transmission of information up and down the bureaucracy.  

Even when posed in abstract form, problems of this sort are intractably difficult 
mathematically. Perhaps the most famous example is the �traveling salesman problem.� A 
salesman has the task of visiting each of the cities in his territory and then returning to his 

                                                 
5 A comprehensive review of the bounded rationality literature is given by Conlisk (1996). 
6 For a starting point to the literature on behavioral economics, see the Russell Sage Foundation Project Review 
(http://www.russellsage.org/programs/proj_reviews/behavioral.htm). For behavioral finance, see Barberis and 
Thaler (2002). 
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starting point. The distance (or cost of traveling) between each pair of cities is known. What 
route minimizes the total cost of travel? This problem is quite easy to state and obviously 
corresponds to a practical management issue, yet it is an instance of one of the most difficult 
outstanding problems in mathematics. While approximations can be made, an algorithm that 
would determine the optimal solution in a length of time that grows only �polynomially� 
with the number of cities has yet to be found (and is widely believed to be impossible to 
find).7 An indication of the difficulty of this problem is that the Clay Mathematics Institute 
has offered a $1 million prize for a valid proof of a polynomial-time algorithm (or for a 
demonstration that no such algorithm can be found in the general case).8  

A strong implication is that there is no way around the limits that �bounded 
rationality� place on human economic activity. The finite processing capacities of individuals 
are mirrored in computational limits on the decision-making of firms. In addition to dealing 
with principal/agent and control problems, management must cope with the reality that only 
approximate solutions can be found to many practical operations problems. To formulate 
such problems as calculus maximization problems that can be solved exactly does violence to 
the underlying reality. Mathematical models that accurately represent the kinds of decisions 
industrial managers must make will necessarily reflect these limitations.  

 
The Evidence 

 
The discussion to this point has been largely theoretical. Yet there is also a substantial 

body of evidence that attests to the fact that firms and other productive organizations fall 
short of complete optimization. The most obvious and compelling evidence is our own 
personal experience working in organizations. Each person has direct knowledge of the ways 
his or her own firm (or university, government agency, or non-profit group) could improve 
its performance. �Bureaucracy� is a ubiquitous epithet, despite the fact that hierarchies and 
formal decision-making procedures are necessary to the functioning of modern complex 
organizations. Knowing that bureaucracies give rise to various kinds of inefficiencies does 
not mean that we could get along without them. 

 Formal empirical literature on the measurement of efficiency (or inefficiency) is also 
extensive. One strand centers on the concept of �X-efficiency� (and its companion �X-
inefficiency) that was introduced by Harvey Leibenstein in a series of papers beginning in 
1966. Leibenstein contrasted �X-efficiency� (management or organizational efficiency)9 with 
allocative efficiency (the traditional kind of efficiency in which, for example, marginal factor 
productivities are equated to factor prices).  He concluded that X-efficiency is more 
important than allocative efficiency in determining profitability.10 Leibenstein�s initial paper 
contained a large body of information (drawn from surveys of industrial establishments, the 

                                                 
7 This means that if T is the running time of the algorithm on a standard computer and N is the number of cities, 
T grows no faster than some polynomial function of N. (Polynomial functions are functions involving sums of 
terms like N a, where a is an integer.) An example of a function that is not polynomial in N is an exponential function 

such as 2N.  

8 For details, and a more general statement of the problem, see www.claymath.org/prizeproblems/index.htm. 
9 Leibenstein identifies three elements as being �significant in determining�X-efficiency:  (1) intra-plant 
motivational efficiency, (2) external motivational efficiency, and (3) nonmarket input efficiency� (Leibenstein 
1966, pp. 406-407).  
10 Leibenstein�s papers through 1989 have been collected in Button (1989), but Leibenstein continued to explore 
the issues through the 1990s (Leibenstein and Maital, 1992, 1994).  
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lag time between invention and the adoption of new technologies, and the return to 
management consulting services) that supported his theoretical argument. The concept and 
measurement of technical efficiency has been generalized through application of �Data 
Envelopment Analysis� (DEA). This technique measures the distance of a firm or facility 
from its potential production-possibilities frontier by benchmarking the facility against the 
most efficient facilities in the same industry. As currently practiced, DEA identifies the 
efficient facilities by means of a linear programming calculation of the minimum 
combination of inputs sufficient to produce various combinations of output, as indicated by 
the input and output data of firms currently in the market. Even though this represents a 
lower bound on efficient combinations (it is always possible that techniques more efficient 
than any currently seen in the market are feasible), DEA provides a standardized way to 
compare the technical efficiencies of a set of facilities.  

The DEA technique was originally introduced in the 1950s (Koopmans 1951; Farrell 
1957), but several modern treatments are available (Cooper, Seiford, and Tone 2000; 
Charnes et al. 1994; Sengupta 1995). The empirical DEA literature is extensive; the CD-
ROM bibliography (Seiford 2000) accompanying Cooper et al. (2000) covering the period 
1978 through September 1999, contains over 1,500 entries, excluding technical reports and 
working papers. A recent non-systematic compilation of 26 such studies revealed an average 
efficiency level of 86% (compared to the efficiency of firms on the DEA production-
possibilities frontier of 100%) (DeCanio 1997).  

DEA is not the only approach to the measurement of relative efficiency. For example, 
Marc Ross and his colleagues at the University of Michigan have developed the Long-term 
Industrial Energy Forecasting (LIEF) model that has established a so-called efficiency gap ― 
in effect, the difference between average and best practice ― that ranges as high as 40 
percent.11 In light of all these indications of the failure of firms to optimize, the question 
needs to be asked: �How can standard economic models ignore such extensive and diverse 
evidence in favor of an unsubstantiated preference for the unadorned profit maximization 
model of firms and production?�  

 
Evolutionary Models of Production and Markets 

 
If the representation of production in energy/economic models is to progress beyond 

the �profit maximization subject to the production function� characterization, new 
approaches need to be incorporated into the modeling framework. There is room for 
improvement both in how the internal decision-making of firms is characterized and in the 
portrayal of market dynamics. Modern computational tools show promise for representing 
both elements in an evolutionary perspective.12 A suitable model has to have two elements: 
(1) a population of firms, with some characterization of the decision processes of those firms, 
and (2) specification of the dynamics through which market pressures shape the evolutionary 
process. Why many firms? A standard optimizing model will show perhaps 35 sectors of the 

                                                 
11 See, Ross et al (1993) for the background and development of the LIEF model, and Cleetus et al (2003) for an 
updated treatment and use of the model. Førsund (1999) contains a discussion of other methodologies to 
measure relative efficiency. 
12 For what is still the best general introduction to evolutionary models in economics, see Nelson and Winter 
(1982). For an historical treatment, see Hodgson (1997).  For a description of both the overlapping elements and 
differences in the traditions of evolutionary biology and neoclassical economics see Krugman (1996). 
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economy, with only one typical �firm� representing each sector. In other words, in the 
standard models there is the equivalent of a �representative agent� deciding on all matters 
affecting each sector. Moreover, the only basis for decisions within a given sector is the 
information contained in the prices faced by the sector.  

But relying on the purely mathematical convenience of a representative agent is to 
abstract away from the diversity of the industrial economy ― a social system in which there 
are more than 1.1 million industrial establishments and 25 million people employed in those 
establishments. Decisions are made within those and other organizations that affect more 
than more than $1.2 trillion in annual capital expenditures.13 The preferences, expectations, 
and other characteristics of individual firms affect their investment choices and the 
consequent impact on aggregate energy use. Assuming that an average firm will adequately 
represent the spectrum of behaviors and investment choices unnecessarily limits the full set 
of choices. Perhaps just as important, it will provide little insight into the range of policies 
that might positively impact both energy use and the output or profitability of individual 
firms. Thus, if we break from the modeling limitations of a representative agent who makes 
average decisions based on prices alone, we may be able to explore a richer set of 
opportunities for industrial energy users and policy makers. 

One way to represent the diversity of firms is to simulate the dynamics of the 
population of firms with a Genetic Algorithm (GA). This is a technique that has found 
application in widespread areas. It can be used to search a large and complicated parameter 
space for good solutions to optimization problems. For example, using Sun Microsystems 
workstations, researchers at the University of Wisconsin�s Energy Research Center employed 
a genetic algorithm to design truck engines that pollute less while also consuming less 
energy. Usually, the engineers will optimize system design for either fuel efficiency or for 
reduced pollution levels, but the genetic algorithm was able to help engineers simultaneously 
improve both attributes. The new engine design cut nitric-oxide emissions by three times and 
soot emissions by 50 percent while simultaneously reducing fuel consumption by 15 percent 
(Colin 2000).  

The GA technique can also be used to create a more general model of industrial 
dynamics. The GA begins with a population of entities (stylized representations of firms in a 
particular sector, for example) and mimics biological evolution by allowing those entities to 
mutate, merge, and adopt some of the characteristics of the other members of the population, 
all the while allowing the more fit members of the population to have a differential advantage 
in survival and/or in passing their characteristics on to members of succeeding generations of 
the population. What is required is a scheme to encode the �genetic information� of the firms 
(their operating procedures, decision-making rules, organizational structures, etc.). The 
algorithm creates �offspring� of the parent entities through mutation and exchange of genetic 
information (analogous to what happens in biological sexual reproduction), subjecting the 
entire population to selection pressure over time (see Holland 1975; Goldberg 1989; and 
Mitchell 1996 for standard treatments of the computational techniques).  

To provide a sketch of how this search technique might work for industrial energy 
models, suppose we initialize a relatively large number of firms with a variety of 
characteristics. These may include organizational structure, capacity for learning by doing, 
expectations formation mechanisms, and other elements that affect investment decisions. 
Each of these characteristics might be encoded in a set of bits that form a larger 
                                                 
13 See Tables 601, 714, and 736 in the U.S. Statistical Abstract (U.S. Census Bureau 2002) 
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�chromosome� embodying the particular characteristics of the firm. Fitness of the 
organization is determined by normal profitability conditions that depend on how the firm 
responds to external market conditions. Two members of this evolving population can 
produce an offspring by �crossover� exchange of genetic information. This is illustrated in 
Figure 1 below.  
 

Figure 1.  Chromosomes of Two Parents and Offspring 
Genes a b c d e f g h i j k l m n 
Firm 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 
Firm 2 1 1 1 0 0 1 0 1 0 0 0 1 1 0 
               
Offspring 1 0 0 0 0 1 0 1 0 0 0 1 1 0 

 
In this example, each gene on the 14-bit chromosome indicates a specific condition or 

characteristic of the firm that shapes decisions about energy investments. For example, gene 
a might represent whether the firm uses NPV or payback to evaluate investments (with �1� 
coding the use of NPV and �0� the use of simple payback); gene b could represent whether 
the firm uses in-house forecasting of future market conditions or contracts it out to a 
consulting firm; gene c might indicate whether the firm behaves in a risk-neutral or risk-
averse manner in evaluating the projects, etc. A string of genes might represent the 
organizational structure of the firm, using the elements of the adjacency matrix of the firm�s 
network structure to map out the communications links (see DeCanio et al. (2000) for an 
illustration of how this can be done). If these two firms are selected to reproduce (via merger, 
buyout, or spinoff) because their fitness is relatively high compared to the other firms in the 
population, the resulting offspring organization could be as shown. The offspring takes genes 
a through e from Firm 1 and genes f through n from Firm 2. (These are indicated in bold 
italics in Figure 1.) The genetic algorithm operates on the whole population of organizations, 
differentially selecting members of the population for reproduction according to their relative 
fitness (profitability), creating new firms over time as illustrated in Figure 1, and repeats the 
steps in each successive generation. Mutations can also occur at random if genes are 
probabilistically switched. 

Models of this type have the great advantage that they can be used to study the 
behavior of populations of firms, not just the equilibrium conditions for a representative firm. 
The first consequence is that it becomes possible to analyze the distributions of various 
characteristics in the evolving population. Evolving populations can be expected to display 
varying levels of profitability (or technical efficiency), just as we observe among firms in the 
real world.  

A number of promising results have been derived using this type of framework. 
Consider the problem of searching for the best organizational structure. Amir-Atefi (2001) 
has explored a simulation model in which some of the firms search over the entire space of 
potential structures, while others restrict their search to �divisional� structures only. He finds 
that although it is known that the optimal structure must lie in the unrestricted search space, 
the firms that restrict their search may gain enough of a temporary advantage (because they 
evolve more quickly) to drive the unrestricted searchers out of the market. This can result in 
a permanent inefficiency, at least until some kind of shock or policy signal would open up a 
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wider range of possible structures for examination. Some such mechanism may account for 
the widespread adoption of the divisional corporate form. 

Similarly, DeCanio et al. (2001) developed a model in which firms perform two 
stylized tasks, one corresponding to the adoption of a profitable energy-saving innovation 
and the other corresponding to assembly of a finished product. The most surprising result 
was that alternative organizational structures could produce almost identical net fitness 
(profitability). In particular, two different organizational forms emerged as high performers: 
one in which total costs were relatively high but performance (gross revenue) from both the 
assembly and energy-efficiency investment tasks was also high, and the other in which the 
revenues from both tasks were relatively low but total costs were also low. In other words, 
the market could support equally well a �high cost, high performance� and a �low cost, low 
performance� solution to the competitive puzzle. This outcome is quite suggestive of the 
�Porter hypothesis� that improved environmental performance brought on by appropriate 
regulations need not have an adverse impact on profitability or productivity (Porter 1991, 
Porter and van der Velde 1995). 

Using a different framework, Mitchell (2001) shows how an evolutionary process by 
which agents choose their degree of connectedness to other agents may or may not lead to 
optimal network configurations, depending on the initial conditions and the property-rights 
features of the costs and benefits of technology adoption. Mitchell�s model is in the tradition 
of evolutionary game theory (Weibull 1995), while those of Amir-Atefi and DeCanio et al. 
have kinship with the �organizational demography� literature (Carroll and Hannan 2000).  

 
Conclusions and Policy Implications 

 
A clear implication of the modern theory of the firm, the empirical evidence on 

relative efficiencies of firms, and the properties of evolutionary models is that the assumption 
of optimization should be questioned and, in some cases, abandoned. There is no scientific 
reason to presume that the technology choices of firms could not be improved in such a way 
as to increase both their energy efficiency and their economic performance. Of course, to say 
that there is room for improvement is not the same thing as saying that such improvements 
can come easily or automatically. Management faces a series of tests, generated by 
competitive market pressures, changes in the legal and regulatory environment, and the 
opportunities afforded by technological progress, and making decisions about energy 
investments is just one element of that set.  

This perspective also has policy implications. If optimization cannot be assumed, the 
range of potential policies that can provide net social and economic benefits is widened. 
Price (which can be affected mainly through the tax structure) is no longer the only channel 
through which policies can be effective. Measures that increase the salience of energy 
efficiency, voluntary pollution-prevention programs, labeling, smart standards, government 
demonstrations, information-gathering initiatives, and the facilitation of inter-firm and 
interpersonal networking14 are examples of the extended set of possibilities. The presence of 
path dependence and the persistence of random effects in evolutionary models means that 
early action to change the course of technological development may have effects that are 
amplified over time.  
                                                 
14 See Canan and Reichman (2002) for an analysis of the importance of leadership and intragroup network 
structures in the success of the Montreal Protocol on Substances that Deplete the Ozone Layer. 
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The key is to avoid modeling choices that abstract from essential features of the 
system being studied. Representative agent models that rule out the irreducible diversity of 
industrial firms cannot be expected to yield reliable or informative predictions. The 
assumption of optimization, while useful in some settings because it provides restrictions that 
have testable implications, should not be maintained in the face of overwhelming evidence to 
the contrary. Doing so undermines the credibility of the modeler, and detracts from the 
weight that might properly be given to model results. A refocusing of theoretical attention to 
the tangible realities of industrial behavior will be difficult, and may require years of effort 
before yielding sharp numerical results. However, these disadvantages are far outweighed by 
the gain in reliability and realism that would accompany such an effort.  
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