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ABSTRACT  

A number of Demand Response (DR) technologies work by responding to variable 
electricity pricing, but have not yet been applied to control residential HVAC systems. An 
autonomous thermostat system, the Demand Response Electrical Appliance Manager (DREAM), 
provides possibilities to improve price-based demand responsiveness in residences.  

Built on low-cost, low-power wireless technology, the system uses a disaggregated set of 
energy- and environmental sensors. Control strategies are implemented to optimize electricity 
cost and user’s comfort. To perform the optimization, the system starts from default values and 
learns the dynamic behavior of a house and HVAC system. A graphic user interface provides 
easy interaction with the system. Computer simulation, lab tests and field tests have been used to 
validate the system infrastructure and control strategies. These tests indicate that the DREAM 
responds automatically to price signals with appropriate energy saving behavior. The system can 
reduce electricity consumption during peak price hours without significantly decreasing comfort.  

 
Background 
 

The State of California is moving toward managing electricity use during periods of 
shortages, as caused by curtailment of supply or high demand. Measures to reduce the demand 
for electricity during such shortages are termed ‘demand response’ (DR). Demand response 
measures include load reduction, demand bidding, and variable price rates with some mechanism 
for utility customers to respond to those rates. Demand response measures have the effect of 
adding elasticity to the electricity market. It has been estimated that a mere 2.5% reduction in 
demand in response to shortages can reduce the price spikes by 24% (EPRI 2002). 

As part of the effort to increase demand responsiveness, the California Energy 
Commission is currently constructing a new policy to require DR-enabled thermostats for new 
residential construction in California. We looked at the requirements of the new thermostat and 
problems with existing technology to develop a smart, adaptive, integrated demand-responsive 
residential control system.  

 
Introduction  

 
A number of issues need to be addressed before demand-response systems can be 

effectively deployed on a wide scale in the residential sector. The first is the infrastructure—the 
meters, communication, and responsive controls, such as a DR-enabled thermostat. Cost both to 
purchase and install and usability are other issues. A DR-enabled thermostat must automatically 
respond to price signals so that the homeowner is not forced to be a “day trader” in electricity. 
Homeowner’s preferences for cost versus comfort must be easily transferred to the thermostat. 

In order to achieve the goal of a ten-fold increase over existing thermostat functionality, 
we must understand the problems with the existing technology. The main issue is adoption: if 
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people do not accept the technology or use it as designed, then it will not achieve the energy 
savings objective. Approximately half of the houses in California that have thermostats have 
programmable thermostats (CEC 2004). However, a Carrier study estimated that 35% do not use 
the programming features, but put the thermostat in hold mode and operate manually (Archacki 
2003). Adding DR functionality raises the level of complexity because a variable price schedule 
overlays the occupants’ existing patterns of air conditioning and heating. Therefore, simplicity of 
operation is essential. The new DR systems have to behave autonomously based on effective 
initial defaults and machine learning. It needs to work right out of the box with no programming 
required in order for it to operate well. The user interface has to be intuitive. It should help 
people manage their energy use within a variable-price context (a new concept for most people). 

A low-cost, autonomous, demand-responsive electrical appliance manager (DREAM) 
that exploits wireless sensor network technology, new smart control algorithms and a graphic 
user interface is being developed to address these issues. Figure 1 shows the DREAM concept 
schematic: 1) the system receives an electricity price from the utility that varies over time based 
on overall demand and supply; 2) the controller receives data from the wireless temperature, 
motion, and electrical current sensors, and controls appliances such as the air conditioner via 
wireless actuators; 3) the occupants determine their usage based on their economic, comfort, and 
convenience preferences. An intuitive interface receives user input as well as informs the 
occupants of the price and their current electricity consumption; and 4) the electricity usage is 
monitored frequently and relayed back to the utility. The DREAM consists of three parts: user 
interface, hardware, and control. 

 
Figure 1. Schematic of the Demand Response Electrical Appliance Manager in a Home 

 
 

System Design 
 
User Interface 
 

The goal of the user interface is to display information to the user and allow input. The 
basis for the design is to help users understand the DR concept, learn how the system works, and 
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manage electricity use efficiently. Figure 2 shows the user interface of DREAM. The left of the 
interface was modeled after the Honeywell Round thermostat, which has great market 
penetration. The right side of the interface is designed as a touch screen “file folder” display, 
where users could see system messages sent by utility or cost information, electrical usage in 
total and for each appliance, and program schedule and temperature settings (Peffer et al. 2005).  

 
Figure 2. The DREAM User Interface 

  
 

Hardware 
 

Coupled with the broader control functionality, there is a need for more energy and 
environmental information via sensing. Useful sensing metrics include temperatures throughout 
the house, outside weather conditions, occupant sensing, and power usage. These combine to 
allow for more targeted control and to be able to deliver predictable behavior and energy savings 
to the occupants. The system we are designing is thus far more information-rich than current 
thermostats and has extended command capability. 

The system design, then, is driven by the need for distributed sensing and actuation in a 
system that can be implemented for a reasonable cost. Because the cost of wiring is usually the 
gating factor in systems requiring distributed sensing and actuation, a major enabling technology 
for this system is low-power, low-cost wireless communication. Each node in this wireless 
system, a so-called mote, has a low-power computer or microprocessor, a low-power radio 
transceiver, and multiple analog or digital input/output channels for sensing and actuation. Power 
is a major issue because an important design goal is ten years of operation without any needed 
scheduled maintenance, such as battery replacement. The system architecture uses a central 
controller and the wireless equivalent of a “star” network for connectivity to distributed motes. 
There is a base station connected to the central controller and one repeater strategically located 
elsewhere in the house. Motes are capable of the more general mesh networking but, thus far, 
that has not been necessary to implement this added level of overhead to improve 
communication range and reliability. 

We replaced the household thermostat with a mote connected to a set of relays that 
actuated the air conditioner compressor, furnace, and blower fan. While many devices might be 
controlled under the DREAM scenario (lab tests coordinated the actuation of a ceiling fan in 
conjunction with air conditioning), the main actuation in our tests was this HVAC relay. 
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Control Structure 
 

Figure 3. Control Hierarchy Layers 

 
 
The addition of demand responsiveness and whole house control to basic thermostat 

functionality leads to a control system with considerable complexity. In order to handle that 
complexity, we have adopted a layered design for the control system software (see Figure 3) 
(Auslander, Ridgely & Ringgenberg 2002). In a layered design, each layer (in theory) interacts 
only with the layers above and below it. This provides for modularization of function and semi-
independent design of each layer. The lower part of the hierarchy describes basic control 
functions used to maintain temperature in the house and other functions (such as turning on other 
appliances). The lowest layer, the Sensor/Actuator Layer, maintains communication between the 
controller and the motes with sensors and actuators. Thus, the function of the lowest levels is 
similar to a conventional thermostat—to manipulate the HVAC system for thermal control. The 
most complex layer is the Goal Seeking Layer. It receives price information and must make 
decisions about how to best compromise comfort and cost. In the middle layers, choices must be 
made as to how to meet the compromise decided on by the Goal Seeker. In many cases, there are 
choices as to how to achieve the goal; for example, for cooling, one might use a whole house fan, 
air conditioning, and/or ceiling fans. Embedded in the hierarchical structure, system functions 
are designed to improve demand responsiveness and optimal control performance. 

 
Control Algorithms 
 

Our hypothesis is that if the new thermostat is autonomous, that is, could work well right 
out-of-the-box, then the technology would be more acceptable to the occupants of the house. 
Upon installation, the thermostat would immediately begin adapting control strategies to the 
specific HVAC system, house parameters, climate, and price. Towards that end, we have 
developed a learning algorithm to predict thermal behavior of house and HVAC system. We 
have also developed optimization strategies that look at the prediction, the data from the house 
and occupants, and electricity price in order to determine temperature setpoint.  

 

Goal Seeking Layer 

Supervisory Layer 

Direct Control Layer  

DR Pricing User Interface Layer User Learning 

Sensor/Actuator Layer 

Mode & Setpoint

Setpoint

On/Off & Setpoint

AC On/Off Temperature

Current Process Temperature 

Operating Device & Temperature 

Information 

Query 

1-272008 ACEEE Summer Study on Energy Efficiency in Buildings



Optimization 
 

The DREAM is designed to reduce electricity loads during hours of peak demand and 
minimize thermal discomfort caused by such reduction. The mechanism to drive the system is 
the DR signals—presumably price—set by utility companies. From the users’ point of view, the 
goal of the DREAM system is to maintain the users’ comfort for the minimum electrical energy 
cost. Therefore, how well the system compromises cost and thermal comfort is the key of 
DREAM. 

The decision-making process takes three steps to determine a goal temperature. The first 
step is to choose a cooling/heating mode based on season and temperature trend. The second step 
is to adapt different control strategies to deal with temperature requirements varying with 
seasons, occupancy status, and price changes. The final step is to decide the temperature setpoint 
by minimizing a utility function consisting of electricity cost and thermal discomfort.  
 Four system states are defined for implementing different control strategies (Table 1). 
Although the objectives of each state are different, every state considers two factors: cost and 
occupant’s thermal comfort. These are somewhat competitive – less cost means less comfort and 
greater cost means more comfort. In each strategy, the trade-off between the two is evaluated for 
different time periods. For example, the normal state considers the steady state trade-off while 
the precool/preheat state focuses on the transient process during the period before and after a 
price increase. The last three strategies evaluate the temperature trend and estimated electricity 
consumption, which are obtained by learning the house characteristics. 
 

Table 1. Control Strategy Design 
Strategy Name Objective 

Normal Optimize cost vs. comfort when there is no future price increase or 
predicted arrival/departure 

Precool/Preheat  Save money by shifting load in anticipation of a future price 
increase period (pre-cool)  

Departure/Arrival 
Preparation 

Save energy if departure is predicted 
Set comfort temperature if arrival is predicted 

Combination Prepare for both future price increase and predicted departure/arrival 
 

To evaluate residential thermal comfort, we used the Adaptive Comfort Standard (ACS), 
defined in ASHRAE Standard 55-2004 (ASHRAE 2004). It is designed for office buildings with 
natural ventilation, and adapts the comfort temperature range according to mean outdoor 
temperature. The comfort is denoted by the percentage of acceptance for a temperature range.  

Since cost and comfort do not use the same unit, quantitative optimization required 
creating a common currency. We scaled both energy cost and comfort level in percentages, by 
dividing current values by the full range. Additionally we realize that users have different 
preferences of comfort and cost. For example, during high price periods, some people would pay 
more to maintain comfort while some may sacrifice comfort to save money. To customize the 
optimization, tools are needed to accept the users’ preference. The proposed candidate is called 
the “economics index”, as a user-specified term used in the utility function. Ranging from 0 to 1, 
it equals 1 when users would like to maintain 100% comfort without considering price. It is 0 
when only minimum comfort is maintained; the users would like to keep the cost to no more than 
they would have spent if there were no increase in price. The default value 0.5 indicates a 
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common case: users are sensitive to price when price changes from medium to high so that 
setpoints are adjusted moderately. To help users understand the use of the economics index, the 
corresponding comfort level and cost changes are shown. Users’ acceptance of this method is 
still under investigation.   

The state/strategy transitions are driven by current and future events of price and 
occupancy. Figure 4 below shows an event-based state transition diagram. Every arrow indicates 
an event-enabling state change. For example, a future-price-increase event triggers the transition 
from the occupied normal state to the precool/preheat state. Predicted occupancy events are 
generated by users’ daily schedule and future price events are delivered by the electrical utility.   

 
Figure 4. Event Based Strategy Transition 

 
 
House Learning 
 

While the controller’s functions get quite complex, the controller must operate in an 
unmanaged environment and be easy and inexpensive to install. This is in contrast to controllers 
for commercial and industrial buildings, where a substantial amount of effort is spent on 
installation and tuning, and the system is professionally managed. For this reason, the “learning” 
function is among our key enabling technologies. Optimal control must operate well in a wide 
variety of physical environments—large houses, small houses, well-insulated, poorly insulated 
and so on—and adjust its operation to the local conditions. This adjustment must be entirely 
transparent to the occupants. 

We proposed a first order time-invariant model to estimate and predict temperature trend 
and electricity consumption. As indicated in Figure 5, five sources of heat transfer that affect 
indoor temperature are considered: conduction, infiltration, internal gains, solar radiation, and air 
conditioning in summer or heater in winter. Conduction and infiltration are proportional to the 
temperature difference between outside and inside. So the corresponding heat flow is expressed 
as a linear function of temperature difference. Although internal gains due to people, lights, and 
equipment fluctuate daily, these influences are usually much less than the other sources of heat 
transfer and thus it is reasonable to assume this is constant. The temperature changes due to solar 
radiation depend on the size and orientation of windows as well as the structures around a house 
that block or reflect radiation; both are fixed. Then it is reasonable to linearly correlate 
temperature changes and radiation, which depends on time of day and time of year.  Finally, we 
assume that the capacity of AC and heater remain constant. Let α denote conduction and 
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infiltration rate, β denote internal gain, γ denote the dependence of radiation, and δ denote the 
capacity of AC or heater. The following formula is proposed as the predictive house model: 

)()())()((
))()((

HVACstatusradiationtTtT
t

tTttTVHC
inout

inin ⋅+⋅++−⋅=
Δ

−Δ+⋅
δγβα  

where VHC represents volumetric heat capacity.  
 

Figure 5. Five Sources of Heat Transfer for House Modeling 

Source: www.ce.utexas.edu/bmeb/scenarios/heatingCooling.cfm 
 
At the beginning of the system operation, a set of defaults meant to represent the majority 

of California houses provides a “reasonable” prediction. Through data acquisition and analysis, 
these defaults would be updated with learned parameters that represent a better description of the 
house and thus achieve better prediction. To tune the parameters for a specific house, data are 
clustered with respect to radiation conditions and air-conditioning status. Data obtained under no 
radiation and no air-conditioning (usually during night times) are used to tune α and β. After the 
first two parameters are tuned, the next two parameters can be tuned with the data from radiation 
and air-conditioning effects in turn.  

 
Tests and Results 
 

The choice of a hierarchical structure of the control software enabled seamless testing of 
the DREAM via various methods. We tested the functions and infrastructure of the DREAM 
system via a simulation tool, in a controlled setting at the university and a researcher’s home, and 
finally in the field. As a convenient and efficient testing method, computer simulation allowed us 
to easily change different aspects of the system in validating the design hypotheses and 
evaluating the performance of control strategies. The initial physical test of the hardware, 
software, and communication occurred in a controlled laboratory environment. Finally, testing in 
an occupied house helps demonstrate how the DREAM system works in the real world. 

 
Simulation 
 

We built a simulation tool, named Multi-Zone Energy Simulation Tool (MZEST), based 
on a version of the California Non-Residential Engine to evaluate our control strategies. The 

Internal 
Gain

Air 
Conditioning

Solar Radiation 

Conduction 
Infiltration 

qcon = linear (Tout - Tin) 
qinf = linear (Tout - Tin) 
qint = constant 
qrad = linear(Global Radiation) 
 qac = constant 

1-302008 ACEEE Summer Study on Energy Efficiency in Buildings



controller interfaces with MZEST in an iterative (5-minute time step) loop. The controller 
provides the on/off signals of the HVAC equipment and MZEST provides multi-zone 
temperatures based on house parameters that we specified. Additionally, a price generator was 
developed to simulate DR signals from the utility. The electricity rates were generated based on 
real-time electricity demand, which has strong correlation with outdoor weather conditions.  
 
Validating house learning with simulation. We approximated the spectrum of California 
houses using four construction types. Two houses were modeled with relatively little insulation, 
representing houses built before 1978, one with a slab-on-grade foundation and the other a crawl 
space. The other two were modeled using the energy standards of 1992 (insulated envelope and 
double-paned windows), also one with slab-on-grade foundation and the other crawl space. 
These four types are constructed within MZEST and the energy consumption simulated. Each of 
the house models were set up using the learning algorithm proposed earlier. To validate the 
learning algorithm, we compared the simulated indoor temperature and the one predicted by the 
five-parameter house model. Figure 6 shows the results: the blue line represents indoor 
temperature generated by MZEST and the red line represents the prediction, while the black line 
is the outdoor temperature. Predictions are tracking the “actual” values very well for all cases. 
Optimal defaults have been chosen to minimize the total prediction error among the four 
different houses. 
 

Figure 6. Learning on Four Typical California Houses 

 
Optimization on cost and comfort enable DR-response and adaptive control. To evaluate the 
performance of the optimization strategy, we compared it with two typical strategies. One is the 
EnergyStar programmable thermostat’s default settings: daytime setpoint 25.5C and nighttime 
set-back setpoint 28C (EnergyStar 2006). It does not consider DR rates. The other strategy is a 

0 12 24 36 48 60 72

60

70

80

90

100

Te
m

pe
ra

tu
re

 [d
eg

F]

(a) pre-78 Slab

0 12 24 36 48 60 72

60

70

80

90

100

Te
m

pe
ra

tu
re

 [d
eg

F]

(c) post-92 Slab 

0 12 24 36 48 60 72

60

70

80

90

100

Time [hour]

Te
m

pe
ra

tu
re

 [d
eg

F]

(b) pre-78 Crawl Space

0 12 24 36 48 60 72

60

70

80

90

100

Time [hour]

Te
m

pe
ra

tu
re

 [d
eg

F]

(d) post-92 Crawl Space

1-312008 ACEEE Summer Study on Energy Efficiency in Buildings



price-based setting that adjusts the setpoints based on DR signals as well as time: daytime: 25.5C 
(low price); 26.5C (medium price); 28.5C (high price); nighttime: 28C. The DREAM 
optimization with economics index of 0.5 (default setting) was compared to the programmable 
thermostat; the DREAM optimization with economic index of 0.2 (low comfort) was compared 
to the price-based scenario. The house model with optimal default parameters was used. Using 
the MZEST, we ran the simulation using the pre-1978 house with crawl space in a Sacramento 
climate under thermostat control with these four settings. The metrics measured were AC on 
time at the different electricity rates and the user’s discomfort level based on the Adaptive 
Comfort Standard. 

The results are presented in Figure 7. First, the left two results show that the DREAM 
with default economic index of 0.5 has fewer hours of air conditioning during high price periods 
and slightly more at medium price periods compared with programmable thermostat setting. 
Both offer acceptable thermal comfort since the discomfort indexes are small. This indicates that 
the DREAM successfully shifts the load from high-price period to medium-price period without 
significantly decreasing users’ comfort. The actual cost savings would depend on the difference 
between the high and medium prices. On the right, the price-based setting shows fewer hours of 
air conditioning use, but sacrifices users’ comfort. The DREAM with economics index of 0.2 has 
a similar performance. Thus we see that the DREAM responds automatically to price signals 
with appropriate energy saving behavior. Additionally, the design of the DREAM offers users 
choices on their economic and environmental preferences by adjusting a single variable—the 
economics index. 
 

Figure 7. Optimization Performance: AC Time and Thermal Discomfort 

 
 
Field Test 

We tested the DREAM system in two single family occupied houses during summer 
2007. The purpose was to test the functions of the system, to verify simulation results, and to get 
feedback from participants. The two houses were exposed to similar outdoor conditions, but the 
house structure, HVAC system and residents’ schedules were different. This diversity offered the 
opportunity to test the system under different conditions. The total time for the test was 
approximately six weeks. One test began two weeks earlier than the other, leaving time to fix 
problems if any occurred in test 1. Each test was divided into three phases as described in Table 
2, while the communication reliability was continuously monitored.  
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Table 2. Field Test Plan 
Name Length Description 

System check 
out period 1 week 

The DREAM monitors temperature, occupancy status, electricity use, 
and HVAC status under the control of original thermostat. The 
purpose is to learn participants’ temperature preference at different 
time of a day and evaluate default house model and AC efficiency. 

Mimicking 
period 2 days 

The DREAM controls the HVAC system in the same manner as the 
original thermostat. This time is used to test the actuation functions 
and to train the occupants to interact with the DREAM interface. 

Testing 
period 5 weeks 

HVAC system is completely under control of the DREAM. Test 
focuses on optimization and house model learning: 1) Validate 
learned house model by comparing predicted indoor temperature with 
actual temperature. 2) Validate the strategy transition when price or 
occupancy status changes. 3) Compare the optimization performance 
(setpoint) under different values of economics index, using default 
house model or learned house model. 

 
House learning algorithm is promising. Two sets of parameters are compared: the optimal 
default set and the parameters learned using one-month of measured data from house 1. The 
actual outdoor conditions (temperature, solar radiation), AC status and the initial indoor 
temperature were applied to the learned house model for the prediction. Close-loop control based 
on the given setpoint was applied to the house model. Figure 8 shows the comparison between 
measured indoor temperature (black line) with the predicted temperature (red line) for two 
consecutive days. Although the default model provided a good prediction (Figure 8(a)), we see 
significant improvement of the prediction quality after parameters were learned (Figure 8(b)).  
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Figure 8: Indoor Temperature Prediction with/without Parameter Learning 

Antioch, California from Sep.1, 2007 – Sep.2, 2007 
 

Prediction errors come from the assumptions we made when we set up the house model. 
Internal gain was initially modeled as constant, but actually varies by the number of residents 
and their activity. Occupants’ behavior such as opening windows also changes the infiltration 
rate of the house. If this detailed information could be provided, the prediction would likely be 
more accurate.  
 
Strategies transitioned accurately. Because the house was always occupied during these two 
days, state transitions were only triggered by price events. Future events—defined as those 
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occurring in two hours—were taken into account because the time frame is long enough to apply 
precooling strategies. Based on the price schedule, precooling was enabled at 6am and 1pm.   
 
Optimization generates reasonable setpoints based on price. To validate the economics 
index, it was set to 0.3 for day 1 and 0.7 for day 2. Users are assumed to be comfortable (100%) 
at 74F. Setpoints were recalculated by optimization every half hour. Table 3 shows the average 
setpoints determined. In normal mode, setpoints were the same at low price, while slightly higher 
at medium price periods and much higher during high price period for day 1, due to the smaller 
economic index.   
 

Table 3. Average Setpoint at Different Prices for Two Days 
Economics Index Low Med High 

Day 1: 0.3 74F 76F 79F 
Day 2: 0.7 74F 74F 75F 

 
Conclusion  

 
We developed and tested a disaggregated thermostat that automatically responds to utility 

price signals. The Demand Response Electrical Appliance Manager (DREAM) uses a star 
wireless network of multiple sensors to create an information-rich environment. Wireless 
actuators complete the control loop in replacing thermostat relays to HVAC equipment. The 
sophisticated controller at the heart of DREAM uses this information to learn information about 
the house and its equipment to optimize the temperature setpoint for both cost and comfort. The 
user interface provides a friendly and informative face to the system, allowing people full control 
over the system but also teaching and advising them how to save energy and money. 

The DREAM system was tested via simulations, lab tests and field implementations. We 
successfully demonstrated the promise of a smart, adapting, demand responsive disaggregated 
thermostat that uses wireless technology. The optimization algorithm in conjunction with the 
user-specified cost/comfort index worked well in the field tests to provide appropriate comfort 
for the price. Meanwhile, the tests provide insight on potential issues for DR policy and 
technology (described in Peffer et al, 2008). We hope this work provides a springboard towards 
further research and development in learning systems and human behavior in developing a 
demand response future. 
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