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ABSTRACT 

Forecasting and managing residential electricity demand usually entails the use of 
consumption data for specific end-uses like space heating, water heating, lighting and other 
appliances with significant impacts on load. Conventional methods use some form of 
Conditional Demand Analysis (CDA) or engineering model.  Both approaches assume linear 
relationships between consumption and the number of appliances in use and cannot use straight-
forward statistical modeling to disaggregate the space and water heating components of 
consumption. Technical estimates of end-use values also depend on very general suppositions 
about differences between inside and outside temperature, the rate of solar gain and heat loss.  
Such assumptions and dependencies can be shown to introduce unwanted and problematic 
sources of error.   

To address some of these issues, an end-use intensity analysis was conducted using end-
use survey and billing data from 3,621 residential households across the province of British 
Columbia. The main goals were to estimate annual energy consumption for typical homes and 
disaggregate space and water heating consumption for different types of homes without recourse 
to technical data on particular end-uses. This entailed a general linear model of annual residential 
energy consumption with region, building type, heating type and water heating type as 
categorical variables and the linear or polynomial terms of end-use holdings as covariates 
reflecting appliance consumption.  

Socio-economic variables such as the size and age of the building structure and persons 
per household were also included to analyze the consumption effects of social strata. Least 
square means – the predicted marginal means over a population – were used to estimate different 
factor levels in the final model. Space and water heating consumption was then decomposed for 
different type of homes based on simple contrasts of the least square means. 

As this model can interpret electricity consumption by disaggregating space heating and 
water heating for different types of families, it can be a practical alternative to more traditional 
approaches. 

 
Introduction 

 
Forecasting residential electrical demand usually requires specific consumption data for 

end-uses like space heating, water heating, lighting and other appliances.  This information 
allows the isolation and identification of electrical products that have the most significant impact 
on load. The two standard methods of estimating end-use demand are (1) direct metering for 
individual end uses and (2) Conditional Demand Analysis (CDA). Direct metering of individual 
appliances generally provides more precise estimates, but is costly. The cheaper, more traditional 
CDA uses linear regression to disaggregate billing data into particular end use values in terms of 
average unit electricity consumption (UEC).  

CDA was first introduced by Parti and Parti in 1980. Bartels and Fiebig (1990, 2000), 
Bauwens et al. (1994), and Hsiao et al. (1995) conducted further studies to improve the method. 
Yet despite its low cost, the reliability of CDA depends on some questionable assumptions. First, 
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the consumption level of each customer is assumed to be linearly associated with actual counts 
of appliances in use. This is not true for some end-uses.  For example, loads associated with 
refrigerators, stoves, dishwashers, clothes-washers and personal computers vary non-linearly 
with the count of such appliances by household. Secondly, engineering formulae that estimate 
space heating and water heating are based on very general suppositions concerning the 
differential between inside and outside temperature as well as the rate of solar gain and heat loss. 
Thirdly, appliance ownership saturation rates can also be problematic: if a rate is very high (close 
to 100%), then the UEC of the associated product cannot be isolated; if a rate is very low, then 
the estimate is frequently unreliable.  Finally, the traditional CDA does not always consider 
important socio-economic variables such as persons per household or the size and age of the 
building structure.  

These assumptions make the estimation of error difficult and can render results unreliable 
by introducing compound error.  Significant numbers of involved engineering formulae populate 
the functional forms of CDA models without any real accounting in the model itself for the 
possible extraneous error associated with them1.   

Variables based on combinations of values and variables can resist direct interpretation. 
For example, suppose that the surface area of a residential structure is modeled as a function of 
total floor area to the power of 0.5 - an assumed elasticity of surface area with respect to the 
amount of square footage. This estimate is therefore exogenous to the data2.  Further suppose 
that one of the CDA parameters to be estimated is associated with a variable equal to the surface 
area times heating degree days times income times a dummy variable for electric space heat.  
Such variable specification introduces additional assumptions and calculations that can increase 
uncertainty and error. 

Any of these problems can adversely affect the accuracy of a CDA model. The purpose 
of this study is to avoid these pitfalls by fitting a linear model that directly estimates and predicts 
the annual electricity consumption of average residential households.  The model is based on 
categorical variables such as geographic region, space heating fuel, water heating fuel, existing 
building structure plus the presence of other electrical appliances such as refrigerators, stoves, 
dishwashers, clothes-washers, clothes-dryers, light bulbs, televisions, and personal computers. 

  The unbalanced nature of the design is addressed by using a technique known as least 
square (or adjusted) means.  A brief explanation of the approach is offered in the Energy 
Decomposition Section of the paper. 

 
Objectives 

 
The formal objectives of this study are to (1) estimate annual energy consumption for a 

typical home given its region, building type, space heating type, water heating type, number of 
residents, home size (floor space), age of building and quantity of other specific electric 
appliances, and (2) disaggregate consumption for space heating and water heating for average 
families living in different types of buildings and regions. 

                                                 
1 An example of how such formulae are applied in CDA may be found in Tiedemann and Kelly (2006).  In their very thorough 
paper, the authors estimate at number of parameters based on combinations of terms like Heating Degree Days, Minutes of 
Sunshine, Area of Household or Income. Since some of these terms – such as minutes of sunlight or heating degree days – are 
highly general values, they can introduce additional sources of error.  
2 This example is taken from Kelly and Tiedemann (2006). 
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Data Description and Exploration 
 
To investigate typical home characteristics and features, a disproportionate stratified 

random sample was drawn in 2006 from the Lower Mainland, Vancouver Island, Southern 
Interior and the Northern regions of the BC Hydro service area. 4,338 residential households3 
were successfully surveyed by housing type, age of home, size of home, space heating, water 
heating, and other electric appliances. Space heating fuel was further categorized as either 
primary (principal source) or secondary (backup source).  The number of appliances and persons 
per household as well as the age category of buildings are ordinal counts with building age 
limited to 5 levels – although to simplify modeling, these variables are treated as continuous 
covariates. 

Traditional CDA assumes that consumption for individual households is linearly 
associated with the count of electrical appliances. The data demonstrates that associations 
between energy consumption and appliance counts are actually more complex with consumption 
patterns for some appliances taking polynomial form. Modeling the non-linear relationships 
improves fit and suggests that (1) two refrigerator households consume more than those with 
three or more, (2) two stove households consume more than those with three or more and (3) one 
dishwasher or clothes washer households consume more than those with two or more.  End-use 
consumption values for personal computers also vary non-linearly with the count of units per 
household although the relationship is complex and may result from sampling issues or 
household characteristics not captured in the survey4. 

The data also establishes that electricity consumption climbs with the age of the building; 
older homes consume more on average and consumption takes quadratic form when associated 
with the count of persons per household. A variable indicating family income level was 
eliminated from the model as it had no statistically significant relationship to energy 
consumption – a reasonable expectation given that electricity is affordable to even low income 
families in British Columbia5.   The final model thus considers the square footage of the home, 
the count of persons per household and the age category of the home. 

All modeling and data manipulation was performed using the SAS statistical package. 
 
Model Description 

 
 To compare the effects of different regions, type of space heating, water heating and 
building on total electricity consumption, four categorical variables were coded with a number of 
model covariates. A full model is then fitted to annual energy consumption by building type, 
heating type, water heating type, interactions between these four factors, linear and polynomial 
terms of appliance holdings, the number of people per home and the building age levels. 
Following t-tests of each parameter estimate, the full model is reduced to: 
 

                                                 
3 Missing values reduced the usable sample to 3,621. 
4 The fact that some of these results appear counter-intuitive should be sufficient grounds for caution in assuming any linear 
relationships. 
5 The number of persons per household, building square footage and location may be interpreted as proxy variables for income.  
Since the number of persons and square feet of living space per home are already included, the absence of a specific income 
variable is not a serious drawback to the model.   
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Energy = Intercept + region + building + heating + water heating + building* heating+ 
building*water heating + β0 fridge + β1 fridge*fridge+ β2 stove+ β3 stove*stove + β4 
dishwasher + β5 dishwasher*dishwasher + β6 washer + β7 washer*washer + β8 dryer 
+ β9 bulb + β10TV + β11PC + β12 PC*PC + β13 square footage + β14 people+ β15 
people*people + β16 (age category of building) 

 
 Region, building type, heating type and water heating type are the main factor effects. 
Each factor level is estimated by comparing energy consumption with baseline (the last level of 
each factor). For example, as the last level of the region effect, the Northern region is baseline 
and dummy-coded as zero. The effects of other regions are then individually estimated as the 
mean of energy consumption in the region minus the mean for the Northern Interior. 
 With this model, annual electricity consumption is fairly simple to estimate by specific 
home type. Although too extensive to present here, the analysis of variance (ANOVA) results 
suggest the following interactions6: (1) building with heating effect (implies that heating varies 
with buildings type) and (2) building with water heating effect (implies that water heating varies 
with building type)7.  
 Note that parameter estimates associated with the main effects may not reflect realistic 
consumption values associated with appliances and other variables.  In the approach used for this 
model we are primarily interested in statistically significant interactions – those special cases 
where one variable changes in tandem with another.  Main effects are not easily interpretable.  
Many are only included for the dual purpose of reducing overall error and ensuring model 
stability. 
 In general, if the p-value of a specific term in the model is greater than 0.05, it is deemed 
not to contribute significantly to consumption and is removed from further consideration unless 
contained in a statistically significant interaction term. In the latter case, all main effects factors 
associated with the interaction remain in the reduced model regardless of their own particular p-
values8. Some statistically insignificant terms are also retained to ensure model stability and the 
statistical significance of interactions of interest9. 
 In summary, parameters associated with the number of dishwashers and of clothes dryers 
do not significantly affect total electricity consumption whereas space heating, water heating and 
all the other electric appliances do.  
 
Model Validation 

 
In traditional CDA models, total electricity consumption is normally estimated by a linear 

model with appliance holdings and a few household characteristics as explanatory variables. 
Theoretically, the results of such a model are reliable if the following assumptions apply: (1) 
Each observation is independent, and (2) dependent variables and their residuals are normally 
distributed with constant variance.  If either assumption is violated – whether by serial 
                                                 
6 Interactions show possible relationships between two or more variables in the model. Since they can show how socio-economic 
variables change in association with (for example) space and water heating type, they hold the greatest research interest in this 
instance.  
7 The ANOVA table may be obtained by requesting a copy from the authors.  It is contained in an earlier, longer version of the 
paper. 
8Retention of all main effects terms associated with interactions is required to ensure stability of the model; they are not 
necessarily directly interpretable as unit consumption values.  
9 Removal of statistically weak terms sometimes affects measurement of other parameter of interest. 
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correlation, heteroskedasticity or non-normality – the forecasts, confidence intervals, and 
economic insights yielded by the regression model may be (at best) inefficient or (at worst) 
biased10.   

A number of tests were therefore applied to validate model assumptions.  Actual annual 
consumption was compared with predicted values to test the model’s performance. But as the 
model estimates mean household consumption, extreme values may be considerably understated; 
model validity was thus restricted to estimating the consumption of average (or near average) 
households. The normal Quantile-Quantile (QQ) plot was then used to test the normality of data 
and showed that residuals of the fitted model approximate a normal distribution except for a few 
extreme values (see Figure 1 below).  These extremes were retained in the model as most cannot 
be confirmed as “true” outliers. Those that seemed like good candidates for removal such as 
households with swimming pools and hot tubs11 had virtually no impact on mean values.  

 
                Figure 1: Normality (QQ Plot) of Model Residuals 

  
 

 The plot of residuals versus predicted energy consumption showed that variance expands 
as the predicted values increase.  Although this suggests that an appropriate transformation of a 
dependent variable might be needed to ensure constant variance and model fitness, a variable 
transformation complicates the interpretation of the model.  Since no transformation could be 
found to improve the model, for practical reasons the problem was set aside12. 
 

 

                                                 
10 For example, if consumption data consists of repeated measures in time series, serial correlation could be a problem. Since this 
analysis uses annual energy consumption, the issue does not arise. 
11 For example, this class of customer represents less than 0.15% of the total sample. 
12 A number of transformations were attempted.  Since even the best transformation of the dependent variable (square root) could 
not improve overall predictive power or reduce variance inflation, the original model was retained for the sake of simplicity and 
interpretation. 
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Energy Decomposition Method 
 
In this section, space heating and water heating consumption are decomposed for typical 

households. Generally, single family detached houses have more living space, electric appliances 
and occupants than other types of homes.  On average, single family detached houses date to 
1985, duplexes and townhouses to 1991-92, and mobile homes and apartments to 1988-89.  
Households with average appliance saturation rates were used to decompose space heating and 
water heating by the various groupings. 

To decompose space and water heating consumption, adjustments are made for other 
variable impacts (regions, buildings, appliance holdings, square footage, age of building, and the 
number of people per household). This is accomplished with a technique known as least square 
means13. Least square means (sometimes called adjusted means) are predicted values from a 
multiple regression equation that contains both categorical predictors (factors) and numerical 
predictors (covariates). They are estimated by applying the mean value of a model covariate to 
estimate the mean response for all combinations of factors in the model and taking simple means 
of these estimates over factor levels. This estimation approach avoids any confounding of 
categories through sample imbalances14.  To perform the analysis, estimates of annual 
consumption are expressed in the following functional form: 

 
Electricity = f (region, building, space heating, water heating, refrigerator, stove, dishwasher, 

washer, dryer, bulb, TV, PC, heating degree days, square footage, number of 
people, age of building) . 

 
By way of example, let lsmeans15 (REE/SFD, LM) denote the least squares mean of 

residential electric space heating (REE) for single family detached homes (SFD) in the Lower 
Mainland (LM) with average end-use saturation rates. This is the marginal mean of REE for SFD 
in the Lower Mainland (LM) for two models (electric and non-electric water heating).  

Since the space heating effect interacts with building, and water heating interacts with the 
building effect, the heating effect must be estimated for homes with different building and water 
heating characteristics. Similarly, water heating effects must be estimated for different types of 
space heating and building structure. This requires the following least square means calculations: 

 
1. Lsmeans{REE/[building(1-5)16, water heating(electric/non-electric)]} 
2. Lsmeans{REN17/[building(1-5), water heating(electric/non-electric)]} 
3. Lsmeans{electric water heating/[ building(1-5), space heating(1-3)18]}, and 
4. Lsmeans {non-electric water heating/ [building (1-5), space heating (1-3)]}.  
 

                                                 
13 The term derives from least squares regression. 
14 For example, if the sample contains imbalances between building type and end-use, the marginal (sample) means may produce 
incorrect values.  This is because marginal means are weighted on the basis of sample size while least square means result from 
applying the mean value of some covariate to estimate the mean response for all combinations of the factors and taking simple 
means of these estimates over factor levels.  
15 Lsmeans is a SAS reserve word used in calculating least square means. 
16 Building categories 1 to 5 represent Single Detached Houses, Duplexes, Row/Townhouses, Mobile Homes and Apartments. 
17 REN designates non-electric space heating; REE stands for electric space heating. 
18 Space heating categories 1 to 3 are Primary, Secondary and Non-electric.  
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The effect of electrical space heating can be estimated by the comparison of the least 
squares mean of electric space heating and non-electric space heating (REE/SFD, electric water 
heating) which equals the least square means of (REE/SFD, electric water heating) minus least 
square means of (REN/SFD, electric water heating).  Since the model does not distinguish 
between homes using electricity as a main or secondary fuel, some type of home have quite 
small estimates. Of building types considered, mobile homes were found to consume the most 
electricity. 

Electric water heating consumption is lowest in the Lower Mainland and of building 
types considered, single family detached houses consume the most electricity for water heating.  
The base (energy consumption of electric end-uses plus miscellaneous consumption) can be 
estimated by the linear model in section 4.2 for typical homes using estimates of base, primary, 
secondary space heating (Table 1 and Table 2), and water heating (Table 3). 

Note that there are some differences between raw and aggregation results – the latter of 
which are found in Tables 1, 2 and 3 below. This is explained by the fact that aggregation 
estimates are approximations and cannot be perfectly compared to raw data results since the 
latter describe consumption means based on the unadjusted (unbalanced) sample while the 
former describe means for typical homes based on least square means adjustments.  

 
Table 1: Primary Electric Space Heating Consumption (kWh/year) 

Building Type Water Heating 
Type 

Lower 
Mainland 

Vancouver 
Island 

Southern 
Interior North Average 

Single detached 
house 

Non-electric 4731 5373 5540 5393 5259 

Electric 6320 6963 7130 6982 6849 

Duplex 
Non-electric 5271 5913 6080 5932 5799 

Electric 6860 7502 7669 7522 7388 

Row/townhouse 
Non-electric 3513 4156 4323 4175 4042 

Electric 5103 5745 5912 5764 5631 

Apartment 
Non-electric 1046 1688 1855 1707 1574 

Electric 2635 3277 3444 3297 3163 

Mobile Home 
Non-electric 3727 4370 4537 4389 4256 

Electric 5317 5959 6126 5979 5845 

Average 
Non-electric 3658 4300 4467 4319 4186 

Electric 5247 5889 6056 5909 5775 
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Table 2: Secondary Electric Space Heating Consumption (kWh/year) 
Building Type Water Heating 

Type 
Lower 

Mainland 
Vancouver 

Island 
Southern 
Interior North Average 

Single detached 
house 

Non-electric 309 951 1118 971 837 

Electric 634 1276 1443 1296 1162 

Duplex 
Non-electric 645 1287 1454 1306 1173 

Electric 970 1612 1779 1632 1498 

Row/townhouse 
Non-electric 130 244 411 264 262 

Electric 455 569 736 589 587 

Apartment 
Non-electric 32 146 313 165 164 

Electric 357 471 638 491 489 

Mobile Home 
Non-electric 812 1454 1621 1474 1340 

Electric 1137 1779 1946 1799 1665 

Average 
Non-electric 385 817 984 846 755 

Electric 711 1142 1309 1161 1081 

 
Conclusions 

 
Although some functions are quadratic and problematic to interpret, the simple model 

estimates some important residential consumption. Main results show that space heating and 
water heating consumption vary across building types and regions and that the electrical 
consumption of typical homes can be estimated, predicted and subsequently employed to 
forecast, and manage residential electrical load.  This is accomplished without recourse to 
suppositions concerning hours of sunlight, heating degree days and other physical values.  Nor is 
there any need to create additional variables based on combinations of values and variables that 
may resist direct interpretation.  

The approach used here is also less time consuming than typical engineering models and 
reduces the need for highly detailed information on household behavior and appliance 
technology obtained from costly end-use metering – at least in the cases of space and hot water 
heating.  With improved survey design, parameter estimation should also produce more 
significant results for specific end-uses. 
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Table 3: Electric Water Heating Consumption (kWh/year) 

Building Type Water 
Heating Type 

Lower 
Mainland 

Vancouver 
Island 

Southern 
Interior North Average 

Single detached 
house 

Primary 4888 5530 5697 5550 5416 

Secondary 3624 4266 4433 4286 4152 

Non-electric 3299 3941 4108 3961 3827 

Duplex 

Primary 2486 3128 3295 3148 3014 

Secondary 1222 1864 2031 1884 1750 

Non-electric 897 1539 1706 1558 1425 

Row/townhouse 

Primary 2754 3396 3563 3416 3282 

Secondary 1490 2132 2299 2152 2018 

Non-electric 1164 1807 1974 1826 1693 

Apartment 

Primary 1148 1790 1957 1810 1676 

Secondary 823 1465 1632 1485 1351 

Non-electric 1148 1790 1957 1810 1676 

Mobile Home 

Primary 2538 3181 3348 3200 3067 

Secondary 2213 2856 3023 2875 2741 

Non-electric 2412 3054 3221 3074 2940 

Average 

Primary 3268 3911 4078 3930 3797 

Secondary 2004 2647 2814 2666 2533 

Non-electric 1679 2322 2489 2341 2208 
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