Estimating National Carbon Savings Potential from Electricity Demand Reduction in Buildings

Dean Gamble and William Grayson, ICF International

ABSTRACT

Because residential and commercial buildings contribute 39% of all CO₂ emissions, reducing their carbon intensity will be an important component in reducing overall greenhouse gas levels. As a means to help evaluate the impact of national carbon policies on electricity demand, elasticity values were developed in two geographic regions for both the residential and commercial building sectors.

In contrast to previous studies, which utilized an econometric approach, this study attempted to derive elasticity values using a bottom-up approach. Using hourly energy simulations, residential and commercial baseline buildings were modeled and calibrated to approximately match national estimates of electricity consumption. A series of electricityreducing upgrades were then characterized by their incremental cost and savings potential. Potential long-term market adoption was then estimated for each package based upon payback periods under multiple scenarios with varying electricity rates. The results from this process were then condensed into elasticity values, derived from comparing the rate of change for electricity prices to the rate of change in energy savings associated with these prices.

This paper discusses the methodology for defining the elasticity functions and how these estimates compare to previous research. The results illustrate that this approach produces values comparable to previous studies and also reproduces variations by sector and geographic region as has been seen by others. With refinement, this approach can be exploited in analyses attempting to gauge the impact of national carbon policies on US electricity demand.

Introduction

Elasticity is an economic measure of the relationship between changes in the demand of a resource and changes in its price. It is represented by the following equation:

$$E = \frac{\% _Change _in _Quantity _Demanded}{\% _Change _in _Pr ice}$$

Therefore, knowing the elasticity of a resource allows one to evaluate the impact that changing prices will have on total demand. In the context of this paper, the elasticity of electricity is considered and is an important metric for determining the impact of environmental initiatives such a national carbon policy for the United States. In evaluating these policies, if the impact that the policy will have on electricity prices can be assessed, then the elasticity value can be subsequently used to estimate changes in national electricity demand.

For many types of resources including electricity, the resource demand decreases as price increases. This results in a negative elasticity. The extent to which electricity demand falls is dependent on the time period considered. Consider a residential consumer who is burdened with increased prices. In the short-term, the consumer may have limited options to reduce demand. For example, the consumer could reduce thermostat set-points during the summer to reduce cooling consumption, but in contrast it would likely be cost-prohibitive to replace a fully functioning air conditioner with a higher efficiency model. Over longer time periods, however, the consumer may have the option of cost-effectively replacing their air conditioner upon its failure.

For this reason, the elasticity of electricity can be evaluated from a short-term or longterm perspective. Previous studies have estimated the short-term and long-term elasticity of electricity using an econometric approach – reviewing historical consumption data relative to changes in electricity prices.

One comprehensive survey of literature by Bohi & Zimmerman determined that consensus estimates of short and long term elasticity for residential electricity were -0.20 and -0.70. The range of estimates for commercial elasticity was too great to determine consensus values. Another study by Maddala estimated price elasticities for each US state except Hawaii. Short-term values ranged from a minimum of -0.28 to a maximum of -0.06, with a mean of -0.16, while long-term values ranged from a minimum of min of -0.87 to a maximum of 0.24, with a mean of -0.24. A third study by Houthakker, Verleger, and Sheehan, also found evidence of regionally different elasticities for residential electricity. A more recent paper (Bernstein & Griffin 2005) summarizes these studies and produces an additional assessment of regional and national electricity values. Their estimation of national short-term and long-term elasticity values in the residential sector are -0.20 and -0.32 respectively. In the commercial sector, their short-term and long-term estimations are -0.21 and -0.97.

In effect, these studies are capturing changes in energy-consuming behavior, but without knowing what these behaviors are. The approach used in this paper estimates elasticity by considering what long-term energy-consuming behaviors might occur in response to changes in electricity prices and then estimating the likelihood of their adoption in the marketplace. In the following sections, the methodology used to develop these elasticity values under various scenarios is presented, the resulting elasticity values are compared to the studies noted above, and the benefits and limitations of this approach are discussed.

Methodology

For this study, a four-step process was used to develop the long-term elasticity functions: develop base-case building consumption scenarios, characterize energy efficiency packages according to incremental cost and savings, analyze the short and long term market potential of these energy efficiency packages under various electricity cost scenarios, and finally calculate the energy impact from these installations and their associated elasticity values.

Step 1: Develop Base-Case Building Consumption Scenarios

In order to estimate energy savings potential, a base-case model of building energy consumption was first developed. The intent of this step was to create representative building configurations such that when estimated building-level consumption for each configuration was multiplied by the quantity of buildings in existence, the total consumption across all configurations would be on par with national estimates of electricity consumption.

The configurations developed were representative of new and existing structures; commercial and residential buildings; and two broad geographic locations. Each configuration was defined by its geographic location, architectural characteristics (e.g., number of stories, conditioned floor area, window area), energy efficiency features (e.g., insulation values, equipment efficiency, lighting density), and operating characteristics (e.g., hours of use, occupancy rates, hot water use per day).

Geographic location and associated climate clearly have an impact on consumption. Two geographic regions, the northern and southern continental United States, were used for this analysis so that differences in elasticity due to these variations could be illustrated. Using a greater quantity of regions in future analyses would further refine the results. To select representative locations for the two geographic regions analyzed, the population weighted average Heating Degree Days (HDD) and Cooling Degree Days (CDD) were calculated. The mapping process used was developed by the Pacific Northwest National Laboratory for the purpose of states or local jurisdictions to define specific weather files for energy code compliance calculations. The resulting locations were Montgomery, AL for the southern region and Allentown, PA for the northern region.

Exhibit 1. Illustration of Northern & Southern Geographic Regions

With the geographic locations selected, the baseline architectural characteristics and energy efficiency features were next defined. While no single study was referenced in defining these parameters, the values were informed by the 2006 International Energy Conservation Code, the Energy Information Administration's Residential Energy Consumption Survey (EIA RECS 2001) and Commercial Building Energy Consumption Survey (EIA CBECS 2003), and the

American Housing Survey (US Census Bureau 2006). The key parameters of each building type are summarized in the following two exhibits.

Region		North	ern	Southern			
Housing Characteristics		Existing	New	Existing	New		
Sub Sector		Single-Famil	y Attached	Single-Fam	nily Attached		
		Single-Family	v Detached	Single-Fam	ily Detached		
Stories Above Grade		Attached: 1	Attached: 1	Attached: 1	Attached: 1		
		Detached: 2	Detached: 2	Detached: 1	Detached: 2		
Foundation Type		Attacheo	d: Slab	Attache	ed: Slab		
		Detached: E	Basement	Detach	ed: Slab		
Square Feet Per Floor		Attached: 900	Attached: 1,000	Attached: 900	Attached: 1,000		
		Detached: 1,000	Detached: 1,100	Detached: 1,850	Detached: 1,000		
Window Area to Floor Area Ratio		Attached: 10%	Attached: 10%	Attached: 10%	Attached: 10%		
		Detached: 16%	Detached: 18%	Detached: 16%	Detached: 18%		
% Ducts Outside Cond Space 1		Attached: 0 or 100%					
		Detached: 75%	Detached: 75%	Detached: 100%	Detached: 75%		
Aspect Ratio	(Front to Side)	2:1	1	2	:1		
Envelope Information		Existing	New	Existing	New		
Attic Insulation	R-Value	Attached: 19	Attached: 38	Attached: 19	Attached: 30		
		Detached: 30	Detached: 30	Detached: 30	Detached: 30		
Ceiling Insulation Grade		3			3		
Wall Construction		2x4	2x6	2x4	2x4		
Wall Insulation	R-Value	13	19	9	13		
Wall Sheathing		OS	В	0	SB		
Wall Insulation Grade		3		:	3		
Number of Panes		2			2		
Window U-Value		Attached: 0.65	Attached: 0.35	Attached: 0.75	Attached: 0.65		
		Detached: 0.55	Detached: 0.35	Detached: 0.75	Detached: 0.65		
Window SHGC		Attached: 0.55	Attached: 0.45	Attached: 0.55	Attached: 0.40		
		Detached: 0.55	Detached: 0.40	Detached: 0.55	Detached: 0.40		
Frame Type		Metal	Vinyl	Metal	Metal		
Infiltration Value	Natural ACH	Attached: 0.75	Attached: 0.38	Attached: 0.75	Attached: 0.33		
		Detached: 0.75	Detached: 0.47	Detached: 0.75	Detached: 0.41		
Slab Insulation	R-Value	Attached: 0	Attached: 10	Attached: 0	Attached: 0		
		Detached: 0	Detached: 10	Detached: 0	Detached: 0		
Basement Space Type		Unconditioned with	n Floor Insulation	Unconditioned wi	th Floor Insulation		
Basement Wall Insulation	R-Value	Nor	ne	No	one		
Basement Wall Sheathing		Nor	ne	No	one		
Floor Insulation Over Bsmt	R-Value	Attached: N/A	Attached: N/A	Attached: N/A	Attached: N/A		
		Detached: 11	Detached: 19	Detached: 0	Detached: 0		
Systems Information		Existing	New	Existing	New		
System Type		Gas Furnace	/ Central AC	Gas Furnace	e / Central AC		
Cooling Efficiency	SEER	11	13	13	13		
Heating Eff. (AFUE)	AFUE	Attached: 80	Attached: 80	Attached: 80	Attached: 80		
		Detached: 80	Detached: 83	Detached: 80	Detached: 80		
Duct Insulation	R-Value	Attached: 4	Attached: 4	Attached: 2	Attached: 4		
		Detached: 4	Detached: 6	Detached: 2	Detached: 6		
Duct Leakage Value	CFM/100 sq ft	15	10	15	10		
Thermostat		Man	ual	Ma	nual		
Domestic Hot Water		Existing	New	Existing	New		
DHW Fuel Type & Energy Factor	EF	Gas: (0.59	Gas:	0.59		
DHW Capacity	Gallons	40)	4	10		
Lighting and Appliances		Existing	New	Existing	New		
Dishwasher Efficiency		Standard E	Efficiency	Standard	Efficiency		
Refrigerator Efficiency		Standard E	fficiency	Standard	Efficiency		
Quantity of Flourescent Fixtures (b	eyond 10%)	0		(0		
Location	,	Existing	New	Existing	New		
City, State		Allentow	vn, PA	Montgor	mery, AL		

Exhibit 2. Summary of Key Baseline Residential Housing Characteristics

1. For top-level attached units, 100% ducts in unconditioned space; for other units, all ducts in conditioned space.

vintage				EXIS	sting		
Building Characteristics		Assembly	Education	Healthcare	Lodging	Office	Retail
Stories Above Grade		1	2	4	10	8	1
Square Feet Per Building		50.000	150.000	250.000	180.000	250.000	70.000
Window Area to Wall Area Ratio		N 12.9%: S 12.9%:	N 57.8%: S 57.8%:	N 39.2%: S 39.2%:	N 45.4%: S 45.4%:	N 57.8%: S 57.8%:	N 5.2%: S 5.2%:
		F 12 9% W 12 9%	E 57 8% W 57 8%	F 39 2% W 39 2%	F 45 4% W 45 4%	E 57 8% W 57 8%	E 5 2% W 5 2%
Envelope Information			,	,			
Roof Insulation	R-Value	18+0	18+0	0+30	14+0	14+0	18+0
	(Ext + Add'l)	1010	1010	0.00			1010
Wall Construction		Metal Frame 2x6	Metal Frame 2x6	Metal Frame 2x6	Metal Frame 2x6	Metal Frame 2x6	Metal Frame 2x6
		24" o.c.	24" o.c.	24" o.c.	24" o.c.	24" o.c.	24" o.c.
Wall Insulation	P-\/aluo	19	19	19	11	11	10
Wall Shoathing	R-Value	2	2	2	2	2	2
Number of Bonos	IN-Value				<u>-</u>	<u>-</u>	
		Cloor 1/9"	Cloor 1/9"	Clear 1/0"	Clear 1/9" 1/4" air	Cloor 1/9" 1/4" oir	Cloor 1/9"
Glass Type		Clear, 1/o	Clear, 1/o	Clear, 1/o			Clear, 1/o
					(IN) Clear 1/4" 1/4" air	(IN) Dronge 1/4" 1/4"	
					Clear, 1/4", 1/4" air	Bronze, 1/4", 1/4"	
			AL		(SEW)	air (SEW)	
Frame Type		Aluminum w/o	Aluminum W/O	Aluminum w/o	Aluminum w/o	Aluminum w/o	Aluminum w/o
		Break, Fixed	Break, Operable	Break, Fixed	Break, Fixed	Break, Fixed	Break, Fixed
Systems Information							
Cooling Source		Packaged Single	Packaged Single	Constant Speed	Constant Speed	Electric	Packaged Single
		Zone DX	Zone DX	Electric Centrifugal	Electric Centrifugal	Reciprocating	Zone DX
				Chiller	Chiller	Chiller	
Cooling Efficiency		8 EER	8 EER	0.75 kW/ton	0.676 kW/ton	0.80 kW/ton	8 EER
Heating Source		Furnace	Furnace	Hot Water Boiler	Hot Water Boiler	Hot Water Boiler	Furnace
-				(Natural Draft)	(Natural Draft)	(Natural Draft)	
Heating Efficiency	AFUE	0.78	0.78	0.78	0.78	0.78	0.78
Economizer?		Yes	Yes	Yes	No	Yes	Yes
Location							
Northern				Allento	wn. PA		
Southern		****		Montao	merv. AL		
					- 11		
Vintage				N	ew		
Building Characteristics		Assembly	Education	Healthcare	Lodaina	Office	Retail
Stories Above Grade		1	2	4	10	8	1
Square Feet Per Building		50,000	150 000	250 000	180,000	250,000	70 000
Window Area to Wall Area Ratio		N 12 9%: S 12 9%:	N 57 8% S 57 8%	N 39 2%: S 39 2%:	N 45 4%: S 45 4%	N 57 2%: S 57 2%	N 5 2%: S 5 2%:
		F 12 9%: W/ 12 9%	E 57 8%: W 57 8%	F 30 2%: W/ 30 2%	F 45 4%: W 45 4%	E 57 2%: W 57 2%	E 5 2%: W/ 5 2%
Envelope Information		L 12.070, W 12.070	L 01.070, 11 01.070	2 00.270, 11 00.270	L 40.470, W 40.470	2 07.270, 11 07.270	2 0.270, 11 0.270
Roof Insulation	R-Value	18+0	18+0	0+30	18+0	18+0	18±0
		10+0	10+0	0100	1010	1010	10+0
Wall Construction	(EXI. + AUUI)	Motal Framo 2x6	Motal Framo 2v6	Motal Framo 2x6	Motal Framo 2v6	Motol Framo 2v6	Motal Framo 2x6
Wair Construction		24" 0.0	24" 0.0	24" 0.0	24" 0 0	24" 0.0	24" 0.0
	DV/shus	24 0.0.	24 0.0.	24 0.0.	24 0.0.	24 0.0.	24 0.0.
	R-value	19	19	19	19	19	19
vvali Sneatning	R-value	<u> </u>	<u>∠</u>	<u>∠</u>	<u>∠</u>	<u>∠</u>	<u>∠</u>
Number of Panes		Z	<u>Z</u>	<u> </u>	Z	<u> </u>	<u>Z</u>
Glass Type		Clear, 1/4", 1/2"	Clear, 1/4", 1/2"	Clear, 1/4", 1/2"	Clear, 1/4", 1/2"	Clear, 1/4", 1/2"	Clear, 1/4", 1/2"
		air(N)	air(N)	air(N)	air(N)	air(N)	air(N)
		Bronze, 1/4", 1/4"	Bronze, 1/4", 1/4"	Bronze, 1/4", 1/4"	Bronze, 1/4", 1/4"	Bronze, 1/4", 1/4"	Clear, 1/4", 1/4" aii
		air (SEW)	air (SEW)	air (SEW)	air (SEW)	air (SEW)	(SEW)
Frame Type		Aluminum w/o	Aluminum w/o	Aluminum w/o	Aluminum w/o	Aluminum w/o	Aluminum w/o
		Break, Fixed	Break, Operable	Break, Fixed	Break, Fixed	Break, Fixed	Break, Fixed
Systems Information							
Cooling Source		Packaged Single	Packaged Single	Constant Speed	Constant Speed	Constant Speed	Packaged Single
		Zone DX	Zone DX	Electric Centrifugal	Electric Centrifugal	Electric Centrifugal	Zone DX
1				Chiller	Chiller	Chiller	
Cooling Efficiency		8.5	8.5	0.676	0.676 kW/ton	0.676 kW/ton	8.5 EER
Heating Source		Furnace	Furnace	Hot Water Boiler	Hot Water Boiler	Hot Water Boiler	Furnace
S				(Natural Draft)	(Natural Draft)	(Natural Draft)	
Heating Efficiency	AFUE	0.78	0.78	0.8	0.8	0.8	0.78
				0.0	0.0	0.0	5.70
Economizer?	74 02	Yes	Yes	Yes	No	Yes	Yes
Economizer?		Yes	Yes	Yes	No	Yes	Yes
Economizer? Location	74.02	Yes	Yes	Yes	No No	Yes	Yes
Economizer? Location Northern		Yes	Yes	Yes Allento	No wn, PA	Yes	Yes

Exhibit 3. Summary of Key Baseline Commercial Building Characteristics

Operating characteristics were defined using the Residential Energy Services Network's Home Energy Rating System (RESNET 2006) for the residential sector and ASHRAE 90.1-2004, the prevailing energy code for the commercial sector.

DOE-2 hourly simulations were next completed to estimate annual electricity consumption for each configuration. These data were then benchmarked relative to historical electricity consumption within the building sector using EIA RECS and EIA CBECS. A summary of the electricity consumption for each configuration, the national estimate of electricity consumption, and the comparison to EIA data are shown in Exhibit 4.

	Annual Consumption		Annual Consumption
Commercial	Per Unit	Residential	Per Unit
Southern Region	kWh	Southern Region	kWh
Existing Construction - Assembly	473,400	Existing Construction - Single Family	10,677
Existing Construction - Education	1,313,700	Existing Construction - Attached Family	7,544
Existing Construction - Hospital (Inpatient)	5,999,000		
Existing Construction - Lodging	3,639,700		
Existing Construction - Retail	2,590,900		
Existing Construction - Office	5,207,300		
Northern Region	kWh	Northern Region	kWh
Existing Construction - Assembly	399,240	Existing Construction - Single Family	8,353
Existing Construction - Education	1,042,800	Existing Construction - Attached Family	6,605
Existing Construction - Hospital (Inpatient)	5,250,000		
Existing Construction - Lodging	3,119,400		
Existing Construction - Retail	2,354,000		
Existing Construction - Office	4,486,300		
National	Total GWh	National	Total GWh
Existing Construction - Assembly	167,253	Existing Construction - Single Family	735,385
Existing Construction - Education	138,564	Existing Construction - Attached Family	194,594
Existing Construction - Hospital (Inpatient)	51,968		
Existing Construction - Lodging	93,200		
Existing Construction - Retail	267,430		
Existing Construction - Office	260,724		
All Commercial Buildings	979,139	All Residential Buildings	929,980
EIA - 2001 CBECS for Selected Sectors	890,000	EIA - 2001 RECS	1,140,000
% Difference	-10%	% Difference	18%

Exhibit 4. Summary of Base-Case Scenario Electricity Consumption

Step 2: Analyze Energy Savings Packages

The next step in estimating elasticity values was to identify and analyze two potential energy efficiency upgrade "packages", which represent bundles of currently available efficiency technologies. The goal of defining these packages was to reasonably bound the levels of efficiency that could be broadly supported in today's marketplace. Therefore, these bounds did not consider the potential of emerging or niche technologies.

To estimate the lower bound of efficiency, the first package was loosely based upon ENERGY STAR guidelines for new and existing buildings. Because the ENERGY STAR program is designed as a voluntary market transformation program, it promotes efficiency upgrades that are both readily available and have been evaluated for cost-effectiveness.

To estimate the upper bound of efficiency, the second package was loosely based upon the standards set forth in the 2005 Energy Policy Act for federal efficiency tax credits, and include best available technologies. This more aggressive package of efficiency upgrades generally had a higher incremental cost and larger savings than the first package. The key upgrade measures considered are summarized by sector in Exhibit 5. Due to space constraints, the specific measures included in each package have not been included.

Exhibit 5. Upgrade Measures Considered	by S	ector
--	------	-------

Commercial Upgrade Measures	Residential Upgrade Measures
High Efficiency HVAC Systems; Use of Economizer	High Efficiency HVAC Systems
Variable Speed Fans & Pumps	ECM Motor
Ventilation Balancing	Increased Duct Insulation
Optimized Temperature Set-points	Decreased Duct Leakage
Optimized Fan Schedule & Chiller Setback for Shoulder Seasons	Ducts in Conditioned Space
Occupancy-based HVAC & Device Power Management	High Efficiency Storage Domestic Hot Water Heaters
High Efficiency Lighting / Occupancy Sensors / Day Lighting	Instantaneous Hot Water Heaters
Towel & Linen Reuse Program	Programamble Thermostats
High Efficiency Office Equipment - Vending & Copying	Increased Ceiling & Wall Insulation; Increased Window Efficiency
Power Management of Registers	High Quality Insulation Installation
ENERGY STAR Lighting & Appliances	Reduced Infiltration with and without Mechanical Ventilation
Increased Roof & Wall Insulation; Increased Window Efficiency	ENERGY STAR Lighting & Appliances

DOE-2 hourly simulations were then used to estimate the savings potential for each package. The following exhibits display the incremental cost, annual savings, and payback period of each efficiency package applied to each building sub-sector.

		Sc	outhern Re	gion		Northern Region						
	Annual S	Savings	Annual	Incremental		Annual S	Savings	Annual	Incremental			
	Per l	Jnit	Savings	Cost	Payback	Per l	Jnit	Savings	Cost	Payback		
	kWh	Therms	\$	\$	Period	kWh	Therms	\$	\$	Period		
Lower-Bound Packages												
New Construction - Assembly	137,470	1,926	22,136	127,684	6	112,600	4,881	21,956	127,684	6		
New Construction - Education	364,800	3,072	56,380	305,629	5	253,950	12,344	51,066	305,629	6		
New Construction - Hospital (Inpatient)	1,347,200	-19,600	172,378	219,199	1	1,110,900	-22,900	134,340	219,199	2		
New Construction - Lodging	1,336,800	6,920	201,582	156,438	1	1,097,900	11,900	172,756	156,438	1		
New Construction - Retail	496,600	6,053	78,917	211,485	3	403,200	21,503	83,284	211,485	3		
New Construction - Office	1,878,500	1,800	274,091	371,740	1	1,501,100	5,400	223,612	371,740	2		
Existing Construction - Assembly	171,950	1,901	27,099	66,464	2	137,450	5,998	26,848	66,464	2		
Existing Construction - Education	437,060	2,967	66,721	240,682	4	309,700	12,405	59,210	240,682	4		
Existing Construction - Hospital (Inpatient)	1,810,500	-23,000	235,526	242,053	1	1,537,500	-25,700	192,869	242,053	1		
Existing Construction - Lodging	1,715,400	5,766	255,067	156,438	1	1,432,500	14,800	224,564	156,438	1		
Existing Construction - Retail	568,000	5,335	88,425	125,664	1	446,900	26,902	95,863	125,664	1		
Existing Construction - Office	2,388,100	-8,900	335,491	371,740	1	2,054,800	-2,000	295,219	371,740	1		
Upper-Bound Packages												
New Construction - Assembly	196,520	1,358	30,029	404,868	13	177,880	3,487	29,794	404,868	14		
New Construction - Education	575,210	2,879	86,625	827,549	10	445,870	10,678	76,927	827,549	11		
New Construction - Hospital (Inpatient)	1,717,800	-26,500	218,050	838,678	4	1,441,700	-30,200	173,787	838,678	5		
New Construction - Lodging	1,347,700	8,665	205,181	335,276	2	1,083,600	16,700	176,244	335,276	2		
New Construction - Retail	787,800	5,502	120,444	760,086	6	663,000	16,524	115,137	760,086	7		
New Construction - Office	2,032,800	-6,800	286,475	751,233	3	1,661,500	-3,300	236,764	751,233	3		
Existing Construction - Assembly	174,530	1,985	27,571	72,378	3	138,240	6,799	27,891	72,378	3		
Existing Construction - Education	434,270	3,017	66,375	258,343	4	304,380	12,661	58,736	258,343	4		
Existing Construction - Hospital (Inpatient)	1,889,400	-21,400	248,804	374,848	2	1,579,400	-23,000	202,063	374,848	2		
Existing Construction - Lodging	1,813,300	7,878	271,689	209,881	1	1,511,000	13,500	234,426	209,881	1		
Existing Construction - Retail	583,800	5,348	90,728	134,107	1	457,700	22,801	92,679	134,107	1		
Existing Construction - Office	2,533,800	7,200	375,232	482,058	1	2,088,700	-1,000	301,286	482,058	2		

Exhibit 6. Characteristics of Efficiency Upgrade Packages – Commercial Buildings

Exhibit 7. Characteristics of Efficiency Upgrade Packages – Residential Buildings

	Southern Region Northern Region									
	Annual S	Savings	Annual	Incremental		Annual	Savings	Annual	Incremental	
	Per	Unit	Savings	Cost	Payback	Per Unit		Savings	Cost	Payback
	kWh	Therms	\$	\$	Period	kWh	Therms	\$	\$	Period
Lower-Bound Packages										
New Construction - Single Family	1,200	90	320	3,299	10	459	254	444	2,398	5
New Construction - Attached Family	641	24	136	1,147	8	466	32	120	626	5
Existing Construction - Single Family	1,396	180	483	4,634	10	324	328	529	2,971	6
Existing Construction - Attached Family	512	83	201	715	4	301	141	253	918	4
Upper-Bound Packages										
New Construction - Single Family	2,768	146	650	7,492	12	1,095	416	780	10,261	13
New Construction - Attached Family	1,341	80	329	2,138	7	868	141	342	4,265	12
Existing Construction - Single Family	2,816	198	732	11,255	15	981	384	715	9,000	13
Existing Construction - Attached Family	1,098	98	316	1,948	6	732	173	368	1,830	5

Step 3: Analyze Market Adoption Potential

After characterizing both the baseline scenario and the lower and upper bound efficiency packages, the market adoption potential for each package was estimated. The intent of this step was to estimate the number of installations of each package that is likely to occur over short and long term time horizons. The adoption potential for each package is assumed to be dependent upon the technical feasibility of installing each package, the market acceptance of the package (which is estimated to be a function of payback period), and the percentage of the market that has not yet adopted such upgrades. These factors are described in greater detail below.

Technical applicability. The percentage of all buildings for which it would be technically feasible to upgrade the baseline technology. For many measures, the applicability would be

100%. However, for certain measures, such as the addition of wall insulation to existing homes, variations in wall construction and accessibility would reduce the applicability below 100%.

Market applicability. The maximum percentage of the marketplace that would be willing to adopt the technology, based solely upon the payback period. This factor estimates payback acceptance rates based on consumers' stated willingness to pay for energy efficiency projects with different paybacks. Separate payback acceptance curves were developed for the residential and non-residential sectors. The non-residential payback acceptance curves are based on the responses of commercial and industrial customers to surveys conducted as part of an energy efficiency baseline study (ICF 2006). The residential surveys completed as a part of that study did not include a payback acceptance question. Therefore, proxy data was used from a statistically representative survey of 407 residential customers from across the United States (Shelton Group 2005). The following exhibit shows the percentage of consumers willing to pursue an energy-saving project at a given payback period.

The implication of the curve is that willingness to pursue a project drops off very quickly as the payback period rises. Though the vast majority of consumers would be willing to pursue a project with a payback of 1 year, only half are willing to accept a project with a 3-year payback. While consumers' hypothetical self-reported payback threshold generally differs considerably from their actual behavior, these data are useful in that they're grounded in actual consumer statements.

Percent not yet adopted. The percentage of buildings that have not already been upgraded to the efficient technology. Because each of the measures considered is commercially available, it is reasonable to expect that some percentage of the market has already adopted the measure.

The above factors were combined to produce an overall applicability factor, defined as:

Overall Applicability = Technical Applicability x Market Applicability x % Not Yet Adopted

It is worth noting that the Market Applicability factor changed with each electricity price scenario considered, because the Applicability Factor is dependent on payback period. As prices

rise, payback period is shortened and market acceptance increases. The other two factors used in the analysis remained static.

The electricity price scenarios considered ranged from \$0.10 to \$0.15 per kWh for residential buildings and from \$0.09 to \$0.14/kWh for commercial buildings. The low ends of these ranges are reflective of national average retail rates in 2006 (EIA 2007). The high ends of these ranges were selected to illustrate the possible impacts on elasticity that may result from a national carbon policy. While these values do not reference a specific study, long-term increases exceeding 45% have been suggested (Douglas 2007). The following exhibits displays the applicability factors estimated for each package, including the variation in market applicability for each electricity rate considered.

	Southern Region Northern Region															
	Technical			Ma	rket			Not Yet	Technical	nical Market					Not Yet	
	Applicability			Applic	ability			Adopted	Applicability		Applicability				Adopted	
	(%)			(%	6)			(%)	(%)		(%)					(%)
				kWh	Rate							kWh	Rate			
Lower-Bound Packages		\$0.09	\$0.10	\$0.11	\$0.12	\$0.13	\$0.14			\$0.09	\$0.10	\$0.11	\$0.12	\$0.13	\$0.14	
New Construction - Assembly	90%	2%	3%	4%	5%	7%	8%	85%	90%	3%	4%	5%	6%	7%	8%	85%
New Construction - Education	90%	3%	4%	5%	6%	8%	9%	85%	90%	3%	4%	4%	5%	6%	7%	85%
New Construction - Hospital (Inpatient)	90%	41%	46%	50%	54%	57%	60%	85%	90%	30%	35%	40%	44%	47%	51%	85%
New Construction - Lodging	90%	63%	66%	69%	71%	73%	75%	85%	90%	58%	61%	64%	66%	69%	71%	85%
New Construction - Retail	90%	18%	21%	24%	26%	29%	32%	85%	90%	23%	25%	28%	30%	32%	34%	85%
New Construction - Office	90%	42%	46%	49%	52%	55%	58%	85%	90%	34%	38%	41%	44%	47%	50%	85%
Existing Construction - Assembly	90%	21%	24%	27%	30%	32%	35%	95%	90%	23%	26%	28%	30%	33%	35%	95%
Existing Construction - Education	90%	9%	12%	14%	16%	18%	21%	95%	90%	9%	10%	12%	14%	15%	17%	95%
Existing Construction - Hospital (Inpatient)	90%	50%	54%	58%	61%	64%	67%	95%	90%	41%	46%	50%	54%	57%	60%	95%
Existing Construction - Lodging	90%	70%	73%	75%	77%	79%	81%	95%	90%	67%	70%	72%	74%	76%	78%	95%
Existing Construction - Retail	90%	41%	45%	48%	51%	53%	56%	95%	90%	49%	51%	53%	55%	57%	59%	95%
Existing Construction - Office	90%	49%	53%	56%	59%	62%	64%	95%	90%	44%	48%	52%	55%	58%	60%	95%
Upper-Bound Packages																
New Construction - Assembly	90%	0%	0%	0%	0%	0%	0%	85%	90%	0%	0%	0%	0%	0%	0%	85%
New Construction - Education	90%	0%	0%	0%	1%	1%	1%	85%	90%	0%	0%	0%	0%	1%	1%	85%
New Construction - Hospital (Inpatient)	90%	6%	8%	11%	13%	16%	19%	85%	90%	2%	4%	6%	8%	10%	12%	85%
New Construction - Lodging	90%	35%	39%	42%	45%	48%	51%	85%	90%	31%	34%	37%	40%	42%	45%	85%
New Construction - Retail	90%	1%	2%	3%	4%	5%	6%	85%	90%	2%	2%	3%	4%	4%	5%	85%
New Construction - Office	90%	17%	20%	23%	27%	30%	32%	85%	90%	11%	14%	17%	20%	23%	25%	85%
Existing Construction - Assembly	90%	19%	22%	24%	27%	30%	32%	95%	90%	22%	24%	27%	29%	31%	33%	95%
Existing Construction - Education	90%	8%	10%	12%	14%	16%	18%	95%	90%	7%	9%	10%	11%	13%	14%	95%
Existing Construction - Hospital (Inpatient)	90%	35%	40%	44%	47%	51%	54%	95%	90%	27%	31%	35%	39%	43%	46%	95%
Existing Construction - Lodging	90%	63%	66%	69%	71%	73%	75%	95%	90%	58%	62%	64%	67%	69%	71%	95%
Existing Construction - Retail	90%	40%	43%	46%	49%	52%	54%	95%	90%	45%	47%	49%	51%	53%	55%	95%
Existing Construction - Office	90%	44%	48%	51%	54%	57%	59%	95%	90%	35%	39%	42%	46%	49%	51%	95%

Exhibit 9. Applicability Factors – Commercial Buildings

Exhibit 10. Applicability Factors – Residential Buildings

			S	outnern	Region				Northern Region							
	Technical			Ma	rket			Not Yet	Technical			Mar	ket			Not Yet
	Applicability			Applic	ability			Adopted	Applicability		Applicability					Adopted
	(%)		(%)						(%)		(%)				(%)	
				kWh	Rate						kWh Rate					
Lower-Bound Packages		\$0.10	\$0.11	\$0.12	\$0.13	\$0.14	\$0.15			\$0.10	\$0.11	\$0.12	\$0.13	\$0.14	\$0.15	
New Construction - Single Family	90%	3%	3%	4%	5%	5%	6%	85%	90%	23%	24%	24%	24%	25%	25%	85%
New Construction - Attached Family	90%	5%	5%	7%	8%	9%	10%	85%	90%	18%	20%	21%	23%	25%	26%	85%
Existing Construction - Single Family	90%	4%	5%	6%	6%	7%	7%	95%	90%	23%	23%	23%	23%	24%	24%	95%
Existing Construction - Attached Family	90%	37%	38%	39%	41%	42%	43%	95%	90%	40%	40%	41%	41%	42%	42%	95%
Upper-Bound Packages																
New Construction - Single Family	90%	2%	2%	2%	3%	3%	4%	95%	90%	2%	2%	2%	2%	2%	3%	95%
New Construction - Attached Family	90%	11%	12%	14%	15%	16%	18%	95%	90%	2%	2%	2%	3%	3%	3%	95%
Existing Construction - Single Family	90%	0%	1%	1%	1%	1%	1%	98%	90%	2%	3%	3%	3%	3%	3%	98%
Existing Construction - Attached Family	90%	13%	15%	16%	17%	19%	20%	98%	90%	24%	25%	26%	27%	28%	29%	98%

Because the upgrades for each package were selected by the authors for mass-market adoption, the Technical Applicability factors were assumed to be relatively high. The % Not Yet Adopted factors were also based upon the authors' best judgment, due to the scarcity of published data related to these values. However, they were informed by available statistics, such as the current national penetration of ENERGY STAR New Homes, which roughly corresponds with the factor for the lower-bound package for residential new construction.

The analysis next estimated the adoption of each package within the marketplace from 2013 to 2030. Upgrades were assumed to occur at the time when new buildings were constructed or, for existing buildings, on a "replace on fail" scenario. Therefore, 100% of new

buildings were considered eligible for receiving the upgrades in each year and it was assumed that 5% of existing buildings would be eligible in each year. Overall adoption was then estimated by multiplying the overall applicability factor by the total number of buildings associated with each baseline scenario and by the annual eligibility factor (i.e., 100% for new buildings and 5% for existing buildings). To account for new construction that would occur between 2013 and 2003, a constant growth rate of 1.35% was assumed for both residential and commercial construction.

Step 4: Estimate National Impacts & Elasticities Using Multiple Electric Price Scenarios

Having configured the base-case buildings, estimating the cost and savings of the energy efficiency bundles, as well as the short and long term market adoption potential, the national electricity savings potential could be calculated for each electricity price scenario. Then, by dividing the percent change in savings by the percent change in electricity price, the elasticity of each scenario could be calculated. These impacts are presented over the time horizon for each geographic region and each price point considered in Exhibits 11 & 12.

						0							0	
	Electric Consumption Savings (GWh)		(GWh)		2015		2	020	2	025	2	030		
	Price					Δ	Δ		Δ		Δ		Δ	
	(\$/kWh)	2015	2020	2025	2030	Price	Cons.	Elasticity	Cons.	Elasticity	Cons.	Elasticity	Cons.	Elasticity
	\$0.09	5,575	20,086	36,582	55,269	-	-	-	-	-	-	-	-	-
	\$0.10	5,983	21,534	39,212	59,240	11%	-7%	-0.69	-7%	-0.68	-7%	-0.68	-7%	-0.68
rth	\$0.11	6,351	22,838	41,583	62,816	10%	-6%	-0.64	-6%	-0.64	-6%	-0.63	-6%	-0.63
۷	\$0.12	6,684	24,020	43,727	66,053	9%	-5%	-0.60	-5%	-0.59	-5%	-0.59	-5%	-0.59
	\$0.13	6,988	25,094	45,677	68,995	8%	-5%	-0.57	-4%	-0.56	-4%	-0.56	-4%	-0.56
	\$0.14	7,266	26,075	47,457	71,680	7%	-4%	-0.54	-4%	-0.53	-4%	-0.53	-4%	-0.52
	\$0.09	9,514	34,315	62,509	94,449	-	-	-	-	-	-	-	-	-
	\$0.10	10,375	37,394	68,111	102,908	11%	-9%	-0.86	-9%	-0.85	-9%	-0.85	-9%	-0.85
uth	\$0.11	11,161	40,205	73,223	110,627	10%	-8%	-0.79	-8%	-0.79	-8%	-0.79	-8%	-0.79
Sol	\$0.12	11,883	42,779	77,902	117,691	9%	-6%	-0.74	-6%	-0.73	-6%	-0.73	-6%	-0.73
	\$0.13	12,547	45,143	82,199	124,178	8%	-6%	-0.70	-6%	-0.69	-6%	-0.69	-6%	-0.69
	\$0.14	13,160	47,321	86,157	130,151	7%	-5%	-0.66	-5%	-0.65	-5%	-0.65	-5%	-0.65

$\Delta mont 11, Consumption Day mes & Diasticities - Commercial Dunumes$	Exhibit 11. Consum	ption Savings &	& Elasticities –	Commercial Buildings
---	---------------------------	-----------------	------------------	-----------------------------

Exhibit 12. Consumption Savings & Elasticities – Residential Buildings

	Electric	Cons	umption	Savings	(GWh)		2	015	2	2020	2	025	2	030
	Price					Δ	Δ		Δ		Δ		Δ	
	(\$/kWh)	2015	2020	2025	2030	Price	Cons.	Elasticity	Cons.	Elasticity	Cons.	Elasticity	Cons.	Elasticity
	\$0.10	886	3,134	5,689	8,583	-	-	-	-	-	-	-	-	-
	\$0.11	907	3,204	5,816	8,774	10%	-2%	-0.24	-2%	-0.23	-2%	-0.23	-2%	-0.23
th T	\$0.12	928	3,274	5,942	8,964	9%	-2%	-0.26	-2%	-0.25	-2%	-0.25	-2%	-0.25
2 Z	\$0.13	949	3,345	6,069	9,155	8%	-2%	-0.28	-2%	-0.26	-2%	-0.26	-2%	-0.26
	\$0.14	969	3,415	6,196	9,346	8%	-2%	-0.29	-2%	-0.28	-2%	-0.28	-2%	-0.28
	\$0.15	990	3,486	6,323	9,536	7%	-2%	-0.31	-2%	-0.30	-2%	-0.29	-2%	-0.29
	\$0.10	593	2,092	3,795	5,724	-	-	-	-	-	-	-	-	-
	\$0.11	651	2,283	4,138	6,239	9%	-10%	-1.05	-9%	-0.98	-9%	-0.97	-9%	-0.97
uth	\$0.12	712	2,483	4,496	6,777	9%	-9%	-1.09	-9%	-1.03	-9%	-1.02	-9%	-1.01
So	\$0.13	775	2,691	4,868	7,335	8%	-9%	-1.13	-8%	-1.07	-8%	-1.06	-8%	-1.05
	\$0.14	841	2,906	5,255	7,914	7%	-8%	-1.17	-8%	-1.10	-8%	-1.09	-8%	-1.09
	\$0.15	909	3,129	5,654	8,513	7%	-8%	-1.20	-8%	-1.13	-8%	-1.12	-8%	-1.12

National weighted elasticity values were then calculated for the residential and commercial building sector by multiplying the elasticity value from each region by its proportion

of national electric retail sales for that sector, as determined by EIA (EIA 2006). This resulted in the national elasticity values reported in Exhibit 13.

Electric Price	Residential				Commercial			
(\$/kWh)	2015	2020	2025	2030	2015	2020	2025	2030
Lowest Rate	-0.63	-0.60	-0.59	-0.59	-0.77	-0.76	-0.76	-0.76
1	-0.66	-0.63	-0.62	-0.62	-0.71	-0.70	-0.70	-0.70
	-0.69	-0.65	-0.65	-0.65	-0.67	-0.66	-0.66	-0.66
•	-0.72	-0.68	-0.67	-0.67	-0.63	-0.62	-0.62	-0.62
Highest Rate	-0.74	-0.70	-0.70	-0.69	-0.59	-0.58	-0.58	-0.58

Exhibit 13. National Elasticity Values

Discussion

The methodology described above allowed for the estimation of long-term elasticity values for residential and commercial building sectors in two geographic regions. This bottom-up approach contrasts with traditional econometric approaches used by others.

Interestingly, the resulting national values for the residential sector, ranging from -0.59 to -0.74, are comparable with the long-term consensus value of -0.70 identified by Bohi and Zimmerman, but are higher than the value of -0.32 identified by Bernstein and Griffin. The resulting national values for the commercial sector, ranging from -0.58 to -0.77 are lower than the long-term value of -0.97 identified by Bernstein and Griffin. Other research had difficulty identifying consensus values for the commercial sector. Using this methodology, variations in values were also identified between geographic regions in both residential and commercial sectors, which reinforces trends identified in other studies. As expected, variations in the commercial sector are smaller than within the residential sector.

While the approach described in this paper produced elasticity values comparable with previous studies, there are a number of potential refinements that could further enhance this methodology. For example, the methodology could benefit from an expansion of the geographic regions considered, the quantity of packages evaluated, and a more refined approach to estimating the applicability factor of each upgrade package. Regarding this last point, future work should consider the impact of varying policy models on market adoption, such as voluntary vs. regulatory structures. The methodology described in this paper assumes that adoption of the efficiency packages is purely voluntary and not influenced by utility sponsored efficiency programs. Such programs would likely reduce market barriers and provide incentives, further reducing payback periods and increasing adoption rates. The model also does not consider secondary effects, including the possibility that elasticities can change over time based upon marketplace perceptions of energy efficiency technologies.

Conclusion

This paper presents a rudimentary process for estimating regional elasticity values for the residential and commercial sectors based upon a new bottom-up approach. Such an analysis contrasts with the traditional econometric approach used in previous studies. This new approach produces long-term elasticity values generally in line with prior research, including a demonstration of differences in values for different sectors and geographic regions. With further refinement, this approach could be used to produce estimates of elasticity values for a greater

number of scenarios with increased resolution and confidence. Such a methodology would be of use to efforts to analyze the long-term impact of national carbon policy on the demand of electricity within the United States.

References

- Bernstein, Mark, and J. Griffin. 2005. *Regional Differences in the Price-Elasticity of Demand For Energy.* Santa Monica, Calif.: RAND Corporation.
- Douglas, John. 2007. "Modeling the Technology Mix." EPRI Journal (spring): 16-19.
- [EIA] Energy Information Administration. 2006. Annual Electric Power Industry Report. <u>http://www.eia.doe.gov/cneaf/electricity/page/eia861.html</u>. Washington, DC: Energy Information Administration.
- [EIA] Energy Information Administration. 2007. Average Retail Price of Electricity to Ultimate Customers by End-Use Sector. <u>http://www.eia.doe.gov/cneaf/electricity/</u> <u>epa/epat7p4.html</u>. Washington, DC: Energy Information Administration.
- [EIA CBECS] Energy Information Administration. 2003. Commercial Buildings Energy Consumption Survey: Building Characteristics. <u>http://www.eia.doe.gov/emeu/cbecs/ cbecs2003/detailed_tables_2003/detailed_tables_2003.html.</u> Washington, DC.: Energy Information Administration.
- [EIA RECS] Energy Information Administration. 2001. *Residential Energy Consumption Survey: Housing Characteristics.* <u>http://www.eia.doe.gov/emeu/recs/recs2001/</u> <u>detail_tables.html.</u> Washington, DC.: Energy Information Administration.
- ICF International. 2006. Arizona Public Service Energy Efficiency Baseline & Market Potential Study. Plano, Tex.: ICF International.
- [RESNET] Residential Energy Services Network, Inc.. 2006. 2006 Mortgage Industry National Home Energy Rating Systems Standards. Oceanside, Calif.: Residential Energy Services Network, Inc..
- Shelton Group. 2005. Energy Pulse 2005: What American Consumers Want in Home Energy Efficiency. Knoxville, Tenn.: Shelton Group.
- U.S. Census Bureau. 2006. American Housing Survey for the United States: 2005. Current Housing Reports, Series H150/05. Washington, DC: U.S. Government Printing Office.