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ABSTRACT 
 
Smart meters report power usage at 15 minute intervals and, compared to monthly power 

bills, provide the users with a much finer resolution time series of energy usage.  However, apart 
from identifying times of peak energy usage, these smart meters provide little actionable data for 
the user in terms of reducing their power costs.  Our research involves the development of an 
intelligent metering system that uses non-intrusive appliance load monitoring (NIALM) to 
identify the largest energy usage appliances in a residence or small business.  The signal 
processing algorithms employed separate the energy used by individual appliances from the total 
natural gas and electricity measured at the point where the utilities enter the residence.  Utility 
ratepayers need detailed information to effectively identify and mitigate inefficient appliances 
and activities.  The cost to operate each specific appliance is sent, via a secure home area 
network, to the user’s computer and accessed via a web browser.  An easy to use interactive tool 
has been developed to label appliances and present this data to the user.  Tests have been 
performed in three residences to compare the performance of our load disaggregation system 
with that of isolated electrical power measurements from ten or more appliances.  Disaggregating 
the total energy usage into appliance specific usage will transform ratepayers’ ability to conserve 
energy.  Inefficient appliances can be identified, usage patterns can be shifted to lower tariffs 
times, failing appliances can be detected before they fail, and energy efficient measures can be 
implemented based on a true cost-benefit calculation. 

 
Introduction 

 
Supplanting our current energy sources of coal, gas, and oil with renewable sources is a 

critical step toward curtailing human caused climate change.  The timescale of this transition will 
be measured in generations.  The 2009 domestic energy consumption projections, from the U.S. 
Energy Information Administration web site (www.eia.doe.gov), forecast that by 2035, coal, 
natural gas, and oil will still account for 78% of the nation’s energy consumption versus the 
current share of 84% in 2008. 

These projections may be altered by technical innovations in renewable energy; however 
the relative growth in carbon free energy sources is likely to only slightly outpace the nation’s 
overall growth in energy consumption.  Moreover, increasing demand from developing countries 
will drive up commodity prices of oil, natural gas, and coal.  To improve the prospects of 
limiting carbon emissions, additional measures must be taken to accelerate the adoption of 
renewable energy sources and improve efficiency.  Energy efficiency can be viewed as an 
additional carbon free energy source since the energy saved offsets the total energy demand. 
                                                 
1 This work was funded by an NSF SBIR Phase I grant (NSF 08-548, FY-2009; Award Number: 0912914) under 
the American Recovery and Reinvestment Act of 2009 (ARRA), and by a grant from NIREC / DOE (Award number 
DE-FG36-08GO88161). 
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Homes and buildings account for ~40% of the total energy consumed in the U.S. 
(www.eia.doe.gov).  A major obstacle to improved efficiency is the lack of relevant information 
ratepayers see when using energy and purchasing products.  Monthly utility bills aggregate 
energy consumption over the billing period.  Appliances and activities that are inefficient are 
hidden within any summary usage information provided in the bill.  Additionally, utility 
ratepayers do not have a convenient way to accurately determine their payback for the costs 
associated with a specific efficiency measure.  This lack of detailed feedback is a market barrier 
to improved energy efficiency and results in inaction on the part of utility ratepayers. 

 
Non-Intrusive Appliance Load Monitoring 

 
Residential monthly gas, electric, and water bills indicate the amount of utilities 

consumed; however this is an ineffective system for motivating consumers to conserve.  Usage 
data arrives typically one month after the activities have occurred and there is no disaggregation 
to indicate what activities incur the greatest cost.  To address this issue, (Hart 1992) created a 
Non-Intrusive Appliance Load Monitoring (NIALM) technique to record energy consumption 
data and determine the operating schedules of the various loads within a residential environment.  
His approach involved measuring the current and voltage on two legs at the service entry point 
into the residence (typically at the electric meter or breaker box).  Using a series of mathematical 
transformations, NIALM determines which of the largest energy consuming appliances are on at 
any moment.  In his original publication, Hart identified a number of limitations of his approach.  
Specifically, the technique is not suitable for detecting household devices using less than 100 W, 
the software is subject to confusion when new appliances are added, and multi-state appliances 
(e.g. dishwashers, washing machines, and heat pumps) appliances are not well defined by the 
software. 

The ability of NIALM to resolve specific loads on electrical systems was enhanced by 
(Leeb, Shaw & Kirtley 1995) with the introduction of transient event detection.  In this approach, 
signatures of appliances at startup are used to identify what appliance is being turned on.  The 
selectivity of NIALM was also improved by using odd number harmonic coefficients of the real 
and reactive power to distinguish appliances. 

Concurrent with the NIALM development, a proprietary software, the Heuristic End-Use 
Load Profiler (HELP), was developed using decision analysis techniques to distinguish 
appliances (Powers, Margossian & Smith 1991).  Factors such as time of day and load duration 
were used to recognize various loads.  In a similar approach (Farinaccio & Zmeureanu 1999), 
used a pattern recognition technique and rules to automatically detect a domestic water heater 
and refrigerator based on electrical current flow into the residence.  The authors also tested their 
generic algorithms in a home and were able to achieve daily recognition rates between 84% and 
90% for the two major appliances.  Further refinement and the use of training datasets, acquired 
directly from individual major appliances, improved the recognition accuracy to greater than 
90% (Marceau & Zmeureanu 2000). 

In the late 1990s, a multi-household NIALM study was conducted for the purposes of 
predicting diurnal load profiles (EPRI, 1997;  Drenker & Kader 1999).  The NIALM system used 
in that study stored “edge” data (real and reactive power load changes between the transition 
from one steady state period to the next) and load profiles with one to fifteen minute resolution.  
The study found that the NIALM system accurately (< 5% difference) isolated the electrical 
power usage of water heaters, well or sewage pumps, and water bed heaters.  Other appliances 
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such as central air conditioners, heat pumps, clothes dryers, and refrigerators were recognized by 
the NIALM with measured and inferred cumulative power differences between 10% and 24%.  
However, some appliances such as furnace blowers, electrical space heaters, dishwashers, and 
range/ovens could not be automatically isolated and identified with the NIALM system. 

The limits and resolution of NIALM were investigated by (Fuentes et al. 2003).  In their 
analysis, electrical current datasets were collected at the distribution level and at 20 individual 
appliances varying in power from 7 W to 570 W.  Tests were conducted in both a laboratory and 
at a residence.  The authors concluded that it was not possible to consistently identify all loads 
individually even with the use of higher order harmonic coefficients.  Since the previous studies 
have indicated recognition accuracies of ~90%, one would expect a limit of detection to be 
approximately 10% of the maximum single load on the system.  In this case 10% of 570 W is 57 
W which was larger than the load of 11 out of the 20 appliances on the circuit. 

Innovations in NIALM methods have been published by (Baranski & Voss 2004; Berges 
et al. 2008; Lee et al. 2005; Patel et al. 2007; Pihala 1998).  However, due to the potentially 
lucrative nature of products developed with this technology, many innovations remain trade 
secrets 
 
The Utility Accountant 

 
The Utility Accountant (UA), an energy management device developed at the Desert 

Research Institute (DRI), measures electricity and natural gas entering a building and applies a 
sophisticated advanced NIALM system to inform users how utilities are consumed by individual 
appliances within the building (Kuhns, Roberts & Nikolich 2008).  The UA provides the 
consumer with a detailed energy bill (much like phone bills) so that the consumer may target 
efficiencies toward the activities that are most wasteful. Figure 1 shows an example of the detail 
feedback that is provided.  In addition to monitoring the utilities, the UA monitors the indoor and 
outdoor temperatures, with this information, coupled with the disaggregated information 
regarding how much energy is used by the HVAC system, the UA is able to accurately calculate 
the buildings heating / cooling envelope. The computer algorithm separates individual appliance 
loads based on: the signals associated with appliances or systems turning on / off, the 
characteristic signature of the appliances while on, and the energy usage profiles of the 
appliances. 

The UA is a significant innovation beyond commercially available remote energy 
displays, or smart meters, in that the system accurately determines the individual energy usage of 
each major load within a building by analyzing only the aggregate building load measured at the 
AC mains.  Data from the UA is accessed via a Web page through the user’s secure networked 
computer requiring no additional specialized software other than a Web browser.  As well as 
monitoring their energy usage, users can target and repair/replace appliances or systems that are 
operating inefficiently.  The UA uses a logic rules engine to identify the various appliances 
within the building. 
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Figure 1 - Example Summary Data from the Single Appliance Tests 

The 90 minute test attributes the costs of the $0.03 of energy consumed in one leg of the house #3 in Reno.  When 
operated during a month-long interval, the result will be an itemized utility bill that will enable users to cost 

effectively target energy efficient activities. 
 
Potential Savings 

 
User savings associated with whole building energy monitors have been established in 

residential markets.  One example (Mountain  2006), reported the results of a 2.5 year pilot study 
involving more than 400 households in Canada using wireless real-time energy display.  During 
the study, the aggregate power consumption by all participants with the display was 6.5% lower 
than the control group without the display.  This reduction did not decay during the study period, 
indicating that long-term efficiencies can be achieved through use of real-time displays.  Positive 
results from this pilot study encouraged Hydro One (Ontario’s largest electrical delivery 
company) to distribute displays to all of their customers free-of-charge upon request.  This 
resulted in a contract to Blue Line Innovations, Inc to purchase 30,000 units. 

The Salt River Project (in Phoenix) deployed more than 50,000 real-time energy displays 
that also incorporate a credit card based prepayment feature (ACEEE, 2007).  Whole-house 
power consumption displays permit users to establish a baseline of consumption and experiment 
with usage behavior to achieve savings (Darby, 2006). 

To date, there are no studies documenting energy conservation using NIALM systems.  
The most analogous study using intrusive load monitoring (Ueno et al., 2006) found that 
Japanese homeowners reduced electricity consumption by 18% and natural gas consumption by 
9%. 

As reported on the US Energy Information Administration web site (www.eia.doe.gov) , 
in 2008, the average California residential customer consumes 7044 kW-hr per year at a rate of 
$0.138/kW-hr for an annual electric bill of $972; and consumes 46.6 Thousand Cubic Feet of 
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natural gas at a rate of $12.75 per Thousand Cubic Foot for an annual gas bill of $594.  
Assuming the same benefits realized with the Japanese study, the average household could save 
1267 kW-hr ($175) on the electric bill and $53 on the gas bill per year by using the Residential 
Utility Monitoring System. 

With an estimated installed cost for the Utility Accountant to be $350 - $400, the device 
would pay for itself within 2 years for the average household.  It is expected that larger 
residential consumers would realize cost benefits sooner since a proportional reduction in 
consumption translates into a large dollar savings.  Installation of the Utility Accountant in small 
businesses is likely to have an even shorter return period since business owners tend to be more 
focused on the profitability of their businesses.  As a retrofit for existing buildings, installation 
requires the user to remove the circuit breaker front panel and to clip the current sensors onto the 
building electrical mains.  While this task can be performed in less than 15 minutes, it is a 
potentially dangerous activity for the average homeowner due to the risk of electrocution and 
requires the services of an electrician. 

 

Utility Accountant Appliance Profiles 
 
A unique feature of the UA is the way it automatically detects appliances in the home.  It 

requires no a-priory knowledge of what is in the house nor does it require that each detected 
appliance exists as a model in its library.  Once installed, the system discovers the main 
appliances in the home over a period of 1 to 3 days.  It searches for key profile information that 
allows the appliances to be isolated from the combined electricity usage measurement.  As time 
progresses the UA builds confidence in the appliances it has isolated and presents this 
information to the user.  Appliances are detected as they are switched on / off. When they are 
first encountered they are added to the internal library of the UA. The UA uses various 
proprietary signal processing algorithms to extract unique profiles for the appliances being 
monitored. Figure 2 shows an example of three appliance profiles: Appliance #27 is a 240V a 
coffee maker; appliance #12 is a HVAC blower; appliance #2 is a refrigerator.  The profiles 
allow the UA to isolate individual appliances from the total power values. Over time the UA 
generates an event time series for each isolated appliance. Figure 3 shows an example event time 
series for three isolated appliances, the red trace indicates the total power on one leg in the home, 
the green trace show the coffee maker that first turns on at 5:00am, the blue trace is the HVAC 
blower, and the brown trace is the refrigerator.  

 
Figure 2 - Example Profile for Three Appliances 

Three appliance profiles: 240V coffee maker (#27), HVAC blower (#12) and refrigerator (#2). The X-axis is the 
phase of the 60Hz voltage cycle, first half is leg1, second half is leg 2. 
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Figure 3 - Usage Time Series 

Usage time series for the three appliances in Figure 2, coffee maker (#27), HVAC (#12) and refrigerator (#2) 

 
Evaluating the Utility Accountant 

 
The NIALM components in the UA are under constant development. It would be neither 

an efficient nor cost effective method of evaluating improvements in the NIALM if field studies 
were required for each improvement. An alternative was to replicate field studies in the lab; by 
replaying back the previously collected raw data as input to the UA NIALM modules. Extensive 
field data was first collected from three residences, recording the power entering the residence on 
the two main legs and on each individual circuit breaker. This data was later replayed as the raw 
input to various versions of the NIALM to quantify the performance of the NIALM. The field 
data logger was part of an NSF SBIR phase I project to test the ability of the UA at isolating 
specific appliance energy usage from whole building energy consumption. 
 
Data Acquisition 

 
The primary data logging equipment assembled (Figure 4) was a National Instruments 

(NI) Chassis for Compact DAQ modules, a 4 channel 24-bit ADC module, and 3 x 16 channel 
16-bit modules.  A custom National Instruments LabView application was written to perform 
summary file averaging calculations and store all logged data on removable high capacity 
storage drives.  The application runs on a netbook PC.  Ten 1TB storage drives were used to hold 
the data and archive the original data sets. 

The DAQ simultaneously logged: 1) the voltage and current on each of the two main 
power legs entering the building (4 channels); 2) the current on each of the individual circuits in 
the circuit breaker box (up to 28 channels); and 3) source and reflected signals from the optical 
gas meter sensor (4 channels).  The equipment was housed in a weatherproof enclosure which 
also includes heating and cooling elements for year round outdoor deployment. 
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Figure 4 - Images of the Hardware Used in 2009 Three Home Trials 

  
DAQ system (left) assembled to monitor energy flow on each circuit (center) & gas flow from the meter dial (right).

 
Two AC voltage sensors and 34 current transformer (CT) sensors were constructed.  The 

CTs were calibrated using a specially built AC power supply capable of generating currents 
between 10mA to 150A (with 0.1% accuracy).  A multiplexed gas sensor was assembled using 
an optical device that attaches to the gas meter and is capable of operating in conditions ranging 
from complete darkness to direct sunlight.  Prior to deployment, the data acquisition system 
underwent calibration and testing using NIST certified voltage and current reference systems.  
Current sensors were calibrated with six standards logarithmically spaced measurements between 
100 mA and 34 A.  The minimum calibration r-square for any sensor through this range was 
0.9998.  The maximum standard errors of the calibrations were 0.8 W for the 24 bit sensors 
attached to the main legs, 7 W for the standard circuit current sensors (16 bit), and 20W for the 
larger sensors used on individual breaker circuits rated at more than 30 A (16 bit). 

 
Residence installation. Three residences in Reno, Nevada, used for the sampling tests are 
described in Table 1.  

 
Table 1.  Description of Test Houses and Sampling Dates 

 House 1 House 2 House 3 
Zip 89512 89509 89511 
Stories 2 1 1 
Square Footage 2843 2447 2818 
Year built 1997 1977 1992 
Bedrooms/Bathrooms 4/3 4/2 3/2.5 
Occupants 
(Adults/Children) 

1/0 2/2 2/0 

Number of Main 
Legs/Circuits 

2/24 2/25 2/28 

Number of appliances 
cataloged/tested 

148/107 111/104 78/60 

 
The data logger sampled the power flowing to each appliance at two points: the power 

flow through the individual circuit breaker and the power flow through one of the two main legs. 

9-314©2010 ACEEE Summer Study on Energy Efficiency in Buildings



This provides an adequate basis to evaluate the accuracy of the NIALM software as each 
appliance needs to be seen at the circuit breaker and the appropriate main leg.  Many circuits 
serve only one or two appliances, and the accuracy of the NIALM results measured on the main 
legs can be evaluated against the integrated power measurements on the individual circuits. 

At each house, all appliances with a rated power >10 W were cataloged in a database.  In 
addition, “single appliance tests” were conducted for as many of these appliances as possible.  
The procedure for the single appliance tests involved: 1) turning off every possible appliance in 
the home; 2) switching on an appliance; 3) wait approximately 20 seconds; 4) switching off the 
appliance; and 5) repeating steps (2) through (4) for each cataloged appliance.  Some cataloged 
appliances could not be switched such as hard wired door bells, fire alarms, etc.  Others such as 
dishwashers have several modes of operation and full cycles were not run for the single 
appliance tests. 

 
Real-time data logging. All data were logged in the field on a 1 TB hard drive.  Due to the high 
resolution and large channel count, ~4.2 GB of data was generated per hour.  The storage format 
used was a self documenting Technical Data Management Streaming (TDMS) format that stores 
measured values as integers and retains a scaling factor to convert these values back into volts or 
amps.  Reading and writing speeds for this data format are very fast making this format ideal for 
these types of data sets.  Typical data volumes for seven days of sampling were 700 GB.  After 
field sampling, an identical copy of the original hard drive was made for archival purposes.  To 
facilitate data processing, all contiguous one hour files were merged into a single TDMS file on a 
3rd hard drive.  This had the additional benefit of defragmenting the files for efficient access of 
any record from the file. Logging all the data in this manner allows for both subsequent analysis 
and algorithm development in the lab. 

 
Single appliance tests. The UA process contains multiple steps that are critical for the system to 
function accurately.  Errors that occur at early stages in the process can result in a missed event 
that may result in power usage errors that are off by orders of magnitude (e.g., a blender that runs 
for a week instead of the actual 20 seconds).  Moreover, the number and complexity of 
appliances in a building or on a circuit have a direct effect on system accuracy due to errors 
associated with mismatching. 

Consequently, percentage performance metrics in units of power may appear very poor 
when in fact the system is only making a relatively small number of errors.  To test the system, 
four types of data sets are available.  In increasing order of complexity, these sets include: 1) 
single appliance tests on one circuit; 2) single appliance tests on one leg; 3) week-long, whole-
house tests on one circuit; and 4) week-long, whole-house tests on one leg. The results obtained 
from these tests are currently being used to improve the NIALM algorithms. 

With the single appliance tests, errors associated with multi-appliance events are 
minimized since all other appliances in the house are turned off.  These tests evaluate how well 
the algorithm distinguishes between similar appliances on the same leg or circuit.  During single-
appliance tests, the timing and activity of each appliance is documented in the field.  This 
information is extremely useful for the load reconciliation step to ensure that the assigned labels 
are accurate. 

Results of the load reconciliation process for the 28 circuits in house #3 were analyzed in 
detail.  One circuit had an issue with a computer and four peripherals turning on simultaneously 
while turning off at separate times.  After that point, the unknown fraction of power became 
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negative due to a missed “on” event.  Other circuits performed very well with all power 
attributed to a baseline load or the appliances tested.  The NIALM system is unable to attribute 
power to appliances that are part of the baseline (constantly on appliances) since there are no 
events associated with this lowest power level seen.  Overall in individual circuit monitoring 
single-appliance tests, the algorithm was able to learn 245 Wh out of a possible 250 Wh (known 
+ unknown) while the baseline accounted for 58 Wh out of 340 Wh of total energy. 

The same single appliance test analysis for leg 2 generated 33 profiles of which three 
were combination profiles.  After reconciliation, 19 unique profiles remained and the resulting 
profiles were linked to 32 individual appliances tests from the field notes.  The reason why 19 
profiles were associated with a larger number of appliances is that four of the profiles mapped 
onto the usage of profiles of several different appliances.  In all cases, the appliances were light 
fixtures with purely resistive profiles.  The algorithm was not be able to differentiate between the 
light fixtures associated with these four profiles (e.g., utility room light 1 can’t be distinguished 
from utility room light 2).  This is not a significant drawback as the algorithm correctly 
apportions energy uses to lighting, and the wattages apportioned are correct. 

Many electrical appliances are comprised of several distinct (elemental) electrical sub-
systems. Test house #3 had two furnaces, which both had three elemental sub-systems.  The 
algorithm was unable to distinguish between the two startup elemental sub-systems of the 
furnaces, but was able to distinguish between the third elemental sub-system of each furnace.  
Each time the furnaces turns on, the three sub-systems operate in sequence - thus we are 
confident that by using higher level sequencing rules we will be able to differentiate among all 
sub-systems of the two furnaces. 

One area that needs improvement is in detection of the computer and its associated 
peripherals. Analysis of the data shows that an “on” transition was missed by the algorithm 
resulting in a negative figure for the “unknown power” being generated when the corresponding 
“off” transition was detected.  This was the only appliance on the leg for which the load 
reconciliation phase was not completely successful.  To overcome the missed “on” transition, the 
user manually grouped the computer and associated peripherals as one appliance. Apart from the 
computer peripherals, the algorithm was able to detect and attribute power to all appliances to 
which it was exposed on this leg; ranging from 25 W light bulbs to a 1.4 kW oven.  

The initial results of the Utility Accountant system indicated that parameter tuning was 
needed to resolve some appliances that used less than 25W.  Other appliances were found to 
have significantly different “off” and “on” profiles. These were accommodated by changing the 
criteria or the weighting of some of the fitting parameters used in the NILAM algorithms. Tuning 
the parameters is a relatively fast process since the program is simply rerun on the reduced 
steady state files with the modified parameters. 
 
Whole house multi-day test. Figure 5 shows some of the appliances that the UA isolated from a 
main circuit leg during five days of normal use of the home.  In this test the UA does not make 
any use of the data seen in the earlier single “on” tests, nor any of the data being simultaneously 
recorded on each of the individual breaker circuits.  However, that data is used by the researchers 
to check how well the individual loads are being isolated from the total load on the main leg. 

Figure 5 shows the total power usage on the main leg with each of the seven colored plots 
indicating an appliances isolated by the UA. There were a total of 3500 appliance transitions 
(appliances turning on / off) during this 5 day sampling period. The seven appliances shown had 
a total of 200 transitions and the UA picked up all the transitions for these seven appliances with 
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no errors or omissions. The UA is able to isolate significantly more appliances than those shown; 
the appliances shown are the appliances for which no error (i.e. missed on or off transition) 
occurred.  The NIALM algorithms are currently being analyzed and improved to overcome the 
missed transitions for the other appliances. 

 
Figure 5 - Time Series of Allocated Power 
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Five day time series of allocated power for one leg of a residence in Reno, NV 
 

Future Work 
 
Data from controlled single appliance tests were analyzed and showed promising results; 

indicating that the system can distinguish and attribute power for 85% of the power used during a 
single appliance tests.  Moreover, the fact that all data analyzed here are archived means that the 
algorithm can be modified and reapplied to improve upon this initial performance measure.  
Transparency of the data processing system is another major advance resulting from this project.  
When the Utility Accountant produces inaccurate results, the data may be probed at each step to 
determine where the error is being produced. 

The results from combined appliances on the individual legs is also encouraging, 
however some particular issues that need to be addresses have been identified.  Many electrical 
appliances are comprised of several distinct (elemental) electrical sub-systems.  For example, a 
microwave oven is composed of a magnetron, turntable, light, fan, and electronic controls.  As 
the microwave is used, its power usage profile varies as the elemental sub-systems are energized.  

9-317©2010 ACEEE Summer Study on Energy Efficiency in Buildings



The UA is able to isolate the elemental sub-systems but a mechanism needs to be developed that 
links those elemental profiles and recognizes them as a single appliance. 

If an appliance is found to turn on and then turn on again without first turning off, the 
NIALM algorithms recognize this as an inconsistency.  The inconsistency can be caused by 
missed events, but could also be caused by two identical version of that appliance at the home 
(e.g. two furnaces).  We are currently developing additional analyses to properly handle such 
apparent inconsistencies.  Variable load appliances, such as a front loading washing machine, 
can generate numerous distinct profiles (Figure 6).  A characteristic of the washing machine is 
that when the washing cycle first starts, the power usage increases with time as the clothes 
become heavier due to the weight of the water absorbed.  As the load increases, the new power 
profile will not match the previous power profile.  The temporal relationships between these 
profiles are currently being analyzed in the order to recognize these profiles as belonging to one 
appliance. 
 

Figure 6 - Six Sequential Profiles for the Washing Machine 

As the clothes in the washing machine get wetter (heavier) the profiles increase. There are several common 
characteristic features present in each profile. X axis = the phase of the 60Hz voltage cycle, Y axis = power. 

 
While several significant challenges remain, the UA has shown promising results in its 

ability to isolate key appliance from the combined electrical signal entering the home.  
Combining the electrical data with measurement taken for other utilities, e.g. gas and water, will 
provide a more robust disaggregation module. 
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