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ABSTRACT 

Energy efficiency resource standards (EERS) are becoming the policy tool of choice for 
stimulating investment in demand-side substitutes for electricity supply. After summarizing 
published information on savings and expenditures by efficiency resource portfolios across the 
United States over the past five years, this paper presents the results of multiple regression 
analysis of actual and planned annual electric energy savings and spending by over thirty 
portfolio administrators in the United States and Canada.  The estimated coefficients reveal two 
opposing forces predicted by economic theory for deepening efficiency resource acquisition: 
economies of scale and diminishing marginal returns. The empirical model also found 
statistically significant covariance, the measurement of how variables change together, between 
efficiency resource costs and temporal, sectoral, and geographic characteristics of efficiency 
portfolios. Finally the paper illustrates how the statistical model can be used to predict future 
efficiency resource acquisition costs corresponding to energy savings targets and thus expected 
budgets in any jurisdiction or utility service area. 
 
Background 

 
Utilities across North America have been relying on energy efficiency investment to 

reduce electric energy and capacity requirements for over a quarter century.  This trend is 
expected to accelerate as policymakers look to energy efficiency as the resource of choice to 
cost-effectively displace new and existing carbon-based electricity supply.  Two recent reports 
by the American Council for an Energy-Efficient Economy (ACEEE) document the ascendance 
of Energy Efficiency Resource Standards (EERS) as a means of establishing multi-year targets 
for electric energy savings (Sciortino, Nowak, et al. 2011; Nowak et al. 2011). Absent detailed 
“bottom-up” studies of achievable efficiency savings and their associated costs, it has been 
difficult for policy makers, regulators, utilities, and other stakeholders to establish expectations 
surrounding the range of potential costs of attaining EERS savings goals. 

 
Historical Data 

 
The US Department of Energy’s Energy Information Administration (EIA) tracks 

statistics on demand-side management (DSM) through its Annual Electric Power Industry 
Report, Form EIA-861. Both reported electric savings from and expenditures on energy-saving 
DSM programs have steadily and significantly increased over the past decade (Figure 1). 
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Figure 1. DSM Activity in the United States 

Source: US EIA 2011 

ACEEE has compiled and analyzed these results in its annual State Energy Efficiency 
Scorecard, beginning in 2006.  ACEEE’s scorecards were originally confined to US EIA 
statistics; recently ACEEE has expanded the scope of data collection beyond published EIA 
results. ACEEE’s latest scorecard showed 48 out of 50 states budgeted a total of $4.6 billion for 
energy efficiency in 2010, and achieved incremental, combined annual savings of 13,147 GWh 
in 2009 (Sciortino, Neubauer, et al. 2011). Although the three most recent ACEEE scorecards 
encompass the entire country, they do not provide cost data corresponding to reported savings 
beyond 2006 and 2007. Nor does ACEEE separately report portfolio savings and cost 
information for residential and non-residential sectors, for which efficiency opportunities differ 
significantly. The EIA data, although collected at the utility level, has not always been consistent 
and lacks explanatory details. To provide a more useful data analysis platform, Green Energy 
Economics Group (GEEG) has gathered primary data on costs and performance reported by 
selected North American portfolio administrators to state and provincial utility regulators.  

 
Looking Ahead 

 
U.S. federal equipment efficiency standards enacted in 2007 for a variety of products and 

equipment, and lighting in particular, will significantly change the baseline market conditions 
confronting DSM program design (US House, 2007). New equipment standards will have the 
dual effects of lowering forecasts of future electricity demand, and reducing the amount of 
savings that DSM programs can achieve beyond market forces. Operating in tandem with more 
energy-efficient building codes and the aforementioned equipment standards, technological 
change is expected to increase the efficiency of a wide variety of products and equipment 
available in the next two decades. This higher efficiency will reduce the energy intensity of 
major household and business electricity end uses. Given this fundamental shift in savings 
opportunities and costs, past performance alone is no longer as likely as it once might have been 
to be a reliable predictor of future energy efficiency resource costs.  
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Economic Theory 
 
Microeconomic theory postulates that the two opposing forces of economies of scale and 

diminishing marginal returns should, in the context of energy efficiency, influence the costs of 
increasing savings from efficiency program portfolios. With regard to economies of scale, 
portfolio administrators experience decreasing unit costs as they spread fixed development, as 
well as marketing and administration costs, across more participants and greater aggregate 
energy savings. The second force, diminishing marginal returns, will likely have an effect at 
some point on portfolio administrators’ expansion path—specifically administrators should 
expect increasing unit costs. Two mutually reinforcing reasons can explain this. First, achieving 
greater savings as a percentage of total consumption eventually requires investment in more 
expensive efficiency measures. For example, the consumer’s price premium for top-efficiency 
equipment is greater than that for mid-efficiency equipment. Second, decades of program 
experience show that programs must offer progressively higher financial incentives to induce 
higher levels of participation among harder-to-reach customers. This second dynamic combines 
with the first to raise costs disproportionately, since it is generally not possible for portfolio 
administrators to engage in “price discrimination” among participants—that is, programs must 
pay the higher incentives to all participants, not just to those customers that are harder to reach. 

 
Data Collection  

 
Efficiency savings can be compared across jurisdictions by first dividing incremental 

annual electric energy savings reported in any one year by corresponding electricity sales.  
Efficiency spending can be compared among jurisdictions either in terms of scale or yield.  To 
compare spending between service areas, expenditures are divided by annual energy sales for 
each service area. To compare savings yields from DSM investment, annual expenditures are 
divided by annual savings to calculate the portfolio administrator’s cost to acquire an annual 
kWh of electricity savings. 

Spending and savings data were collected from a non-random sample of state and 
provincial regulatory filings. Sales data came from the US EIA or annual reports filed by 
program administrators. When possible, the savings data chosen were net of free-ridership, 
spillover, and line loss (that is, net at meter) effects. In addition, great care was taken to make 
sure that only costs directly related to a given savings were included. Any portfolio-wide costs 
not associated with a specific program were allocated between residential and non-residential 
sectors, based on the percentage of spending for that sector in that year. At the time that data was 
collected, the US EIA had not yet released statistics on 2010 utility level electricity sales. In 
order to maintain consistency across the data set, 2010 energy savings were taken as a percentage 
of 2009 energy sales.1 

GEEG collected historic cost and savings data on efficiency portfolios reported to 
regulators for states with the greatest savings as a percentage of sales, particularly those in 
California and Northeastern states with mature portfolios; for Midwestern and Western states 
with significant efficiency portfolios (Iowa, Nevada, and Wisconsin); and for the contiguous 
jurisdictions of Arkansas, Texas, and Oklahoma. Where possible, GEEG obtained cost and 
saving data separately for the residential and non-residential sectors. GEEG also collected 

                                                 
1 2009 savings were also taken as a percentage of 2009 sales. 
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efficiency spending and savings data for two Canadian provinces, British Columbia and Nova 
Scotia.  Finally, GEEG assembled the latest information available on future plans for electric end 
use efficiency investment in several states and provinces that have mature portfolios.  
 
Observations Based on Visual Inspection:  Energy Efficiency Savings Tiers 

 
The state level results showed that annual energy savings as a percentage of sales varies 

widely, both geographically and over time. Looking at savings as a percent of sales from highest 
to lowest, performance can be classified into four tiers.  

Tier 1 (≥1.5%): In the top tier, states are achieving at or near 2% of sales. It contains nine 
program years of experience: California, for four out of the past five years; Vermont, for three 
out the past four years; and Connecticut as of last year. 

Tier 2 (≥0.67% and <1.5%): States in the second tier are saving at or near 1% of annual 
sales, with annual savings ranging from 0.67% to 1.5% of sales. In addition to earlier years’ 
performance by California, Vermont, and Connecticut, this group also has data from 60 program 
years of experience with efficiency portfolios in Iowa, Maine, Massachusetts, Nevada, New 
York, Rhode Island, Hawaii, the Pacific Northwest, British Columbia, and Nova Scotia.  

Tier 3 (≥0.33% and <0.67%): States with savings at or near 0.5% of sales fall into the 
third tier. This group comprises 25 program years of results, and includes savings in even earlier 
years for states in the first two tiers, plus Arkansas, New Jersey, and Wisconsin. 

Tier 4 (<0.33%): States with savings less than 0.33% of sales fall into the lowest tier. 
This group saved approximately 0.25% of sales, and contains earlier results for some states with 
performance in Tier 3, as well as Texas and Arkansas. 

As is clear from the program year data, many states with DSM portfolios in the top two 
performance tiers have progressed through lower tiers over time. Also evident from program 
year performance data is that moving up from one tier to the next is common, especially to and 
from the second tier.  For example, Connecticut increased annual savings from 0.37% to 1.52% 
of sales between 2003 and 2010, moving from Tier 3 to Tier 1.  Nova Scotia recently went from 
0.17% of sales in 2008 (Tier 4 results), to 0.68% of sales in 2010 (Tier 2 results). These 
observations support the feasibility of ramping up utility investment over time. Further 
examination of the data was needed to establish a model for estimating costs, as portfolio 
administrators gain experience and navigate through performance tiers (GEEG 2011). 

 
Multiple Linear Regression Analysis 

 
The next step was to develop an empirical model that predicts energy efficiency resource 

acquisition costs per kWh of annual savings as a function of four types of variables: 
 

 Savings depth 
 Time 
 Customer sector 
 Location 
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The spending and savings data were prepared so that each data point was for a year, 
program administrator, sector (residential or non-residential), the 2011 dollar spent per annual 
kWh (2011$ / kWh-yr), and the savings as a percentage of sales.2 Next, calculated fields and 
dichotomous (binary or “dummy”) variables were added for each data point. Table 1 provides a 
list of all the fields in the data set. 
 

Table 1.  Fields in Regression Data Set 
Variable Designation Definition 

Country Country 
The country in which the energy efficiency activity 
occurred. This was either the United States or Canada. 

State State 
The state (for the United States) or the province (for 
Canada) in which the energy efficiency activity 
occurred. 

Program Administrator Admin The energy efficiency program administrator. 

% Savings Per_Sav 
Incremental annual savings as a percentage of 
applicable sales. 

$ / kWh-yr Dol_kWh_Yr_2011 
The program administrator’s costs, in 2011$, per 
incremental annual kWh. 

New England NE 
Flag for whether the administrator is in New England 
(Connecticut, Maine, Massachusetts, New Hampshire, 
Rhode Island, Vermont). 0 for false, 1 for true. 

California CA 
Flag for whether the administrator is in California. 0 
for false, 1 for true. 

Planned Spending and 
Savings 

Planned 
Flag for whether the spending and savings are planned. 
0 for false, 1 for true. 

Year Yr 
The year in which the energy efficiency activity took 
place 

First Year Yr_1 
The first year in which data were collected for a given 
program administrator. 

Maturity Maturity The current year of a data point, minus Yr_1 

Residential Res 
Flag for whether the sector is residential. 0 for false, 1 
for true. 

Non-residential Nonres 
Flag for whether the sector is non-residential. 0 for 
false, 1 for true. 

Year in 2006 - 2008 Yr_06_08 
Flag for whether the year is any of 2006, 2007, or 
2008. 0 for false, 1 for true. 

Year in 2009 - 2011 Yr_09_11 
Flag for whether year is any of 2009, 2010, or 2011. 0 
for false, 1 for true. 

 
Outliers were identified within this data set as any data point that had 2011$ / kWh-yr 

greater than one dollar ($1). This identification resulted in the removal of eight data points, all 
with savings as a percent of sales below 0.25%. The resulting data set had 473 data points and 
captured the full range of portfolio savings performance, from a low of 0.02% to a high of 
4.17%. For 219 pairs of program administrator and year (436 of the data points), spending and 
savings data were reported separately for residential and non-residential efficiency investment; in 
37 other cases, data were available only at the portfolio level. In aggregate, the data set 

                                                 
2 If sector level information was not available for a given program administrator in a given year, portfolio level 

information was used instead. 
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represents approximately $25 billion of historical and planned investment (in 2011$), generating 
cumulative annual energy savings of over 105,000 GWh / yr. 

Once the data were compiled, the programming language R was used in an iterative 
process to find a best fit multiple linear regression equation to detect and account for covariance 
between 2011$ / kWh-yr and different sets of explanatory variables.3 The first regression 
captured the four variables by testing % Savings, Year, Maturity, Residential, Non-residential, 
Planned Spending and Savings, California, and New England. This regression had an adjusted R-
squared of 0.368. The variables % Savings, California, and New England were all found to be 
statistically significant at the 99.9% confidence level; and Non-residential and Planned Spending 
and Savings at the 95% confidence level. The remaining terms had confidence levels below 90%.   

The next step was to force the intercept to zero, since, in the absence of any energy 
efficiency activity, there should be no costs. This more than doubled the adjusted R-squared to 
0.846, made Year and Maturity statistically significant with a confidence level above 99.9%, and 
improved the confidence level of Planned Spending and Savings to 99%.  Since Residential was 
not significant at a confidence level of 90% or higher, it was dropped from the equation. 
Dropping Residential significantly increased the F-statistic, which rose from 325.7 to 372; it 
created only a slight impact on the adjusted R-squared, dropping it by 0.0001. The resulting 
regression had terms with confidence levels above 99% and an adjusted R-squared of 0.8459.  

Next, various terms were added and removed from the estimated equation in attempts to 
improve the fit of the regression. Binary variables were used to replace the Year term (Yr_06_08 
and Yr_09_11). Non-linear transformations4 of % Savings, Year, and Maturity were also tested 
in combination with and as a replacement for the original temporal terms. This refinement 
process led to the addition of two nonlinear transformations of %_Savings, % Savings-1 
(Per_Sav_Pow) and % Savings2 (Per_Sav_Sq), to the model.  

Finally, the model still used the Year term, which was troubling since Year co-varies 
substantially with the Maturity term for a given administrator. Removing the Year variable 
degraded the fit of the model and the confidence levels of the other variables. It was found that 
the Maturity and Year portions of the function could be expressed in terms of Maturity and First 
Year, reflecting the first year of data in the data set for a given program administrator. While the 
two equations are functionally equivalent, First Year is believed to be a better variable because it 
stays constant for a given program administrator. The resulting best-fit model is shown in Figure 
2, and its summary statistics are shown in Figure 3. 

 
Figure 2.  Best-Fit Multiple Linear Regression Model for 2011$ / kWh-yr 

 

                                                 
3 R is a programming language and software environment for statistical computation language distributed under the 

GNU software license (http://www.r-project.org/about.html). 
4 The non-linear transformations used were y=x-1, y=x2, and y=x3 
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Figure 3.  Best-Fit Multiple Linar Regression Model Statistics 

 
All the model’s estimated coefficients have confidence levels beyond 99.9%, making 

them highly statistically significant. The model accounts for over 87% of the sample variance of 
the dependent variable, acquisition cost per kWh / yr. The model predicts that non-residential 
efficiency acquisition costs are $0.08 / kWh-yr lower than residential or total portfolio costs.  
Acquisition costs are lower outside California and New England, with the former adding $0.169 / 
kWh-yr and the latter adding $0.203 / kWh-yr to predicted costs.  

The model also predicts that acquisition costs increase with portfolio maturity. Each 
calendar year of maturity increases the marginal cost of energy, in 2011$ / kWh-yr terms, by 
$0.00745. The year in which the portfolio starts has much less impact on costs. An administrator 
would have to start more than 40 years earlier to offset the impact of one year of maturity.5  

For the savings term, the model predicts acquisition costs as a polynomial function of 
savings depth. Figure 4 is a graph of the equation from Figure 2 for % Savings between 0 and 
5%, with First Year set to 2009, Maturity set to 3, Planned Spending and Savings set to 1, and 
the rest of the variables set to 0.  
 

                                                 
5 0.00745 / 0.00017 ≈ 43.8 

Variables Coefficients Std. Error t value Pr(>|t|) Signf

Dol_kWh_Yr_2011 Y

Intercept 0
Per_Sav X1 (25.21) 3.05 (8.28) 1.3E‐15 ***

Per_Sav_Pow 1/X1 0.00008 0.00002 5.13 4.3E‐07 ***

Per_Sav_Sq X1^2 522.73 86.24 6.06 2.8E‐09 ***

Yr_1 X2 0.00017 0.00001 16.51 1.6E‐48 ***

Maturity X3 0.00745 0.00124 6.00 3.9E‐09 ***

Nonres X4 (0.08) 0.01 (7.23) 2.1E‐12 ***

Planned X5 0.072 0.015 4.88 1.5E‐06 ***

CA X6 0.169 0.021 7.97 1.2E‐14 ***

NE X7 0.203 0.014 14.94 1.7E‐41 ***

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘+’ 0.1 ‘ ’ 1 

Residual standard error 0.1168 on 464 degrees of freedom Min ‐0.275
Multiple R‐squared 0.8774 1Q ‐0.070

Adjusted R‐squared 0.875 Median ‐0.010

F‐statistic 368.8 on 9 and 464 DF 3Q 0.058
p‐value < 2.2e‐16 Max 0.535

Regression Statistics Residuals
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Figure 4. Graph of Percentage Savings Effect on Costs of Savings 

 
 

The 2011$ / kWh-yr falls as savings increase, until approximately 2.5%, at which point 
the downward pressure on costs begins to reverse. The rate of decline also slows as savings 
increase, until costs bottom out, after which the rate of cost increases also rises. This initial drop 
is clear evidence of economies of scale lasting well into the top tier of energy efficiency savings, 
at which point the rise in costs shows that diminishing returns predominate. Additional evidence 
of diminishing returns comes in the form of the positive coefficient for maturity; every year the 
portfolio matures, the cost of energy savings increases nearly $0.01. 
 
Example of Forecasting Costs of an EERS 

 
The GEEG model can be used to estimate the expected cost of future energy efficiency 

investment on the part of a hypothetical energy efficiency administrator. For this example, 
consider a jurisdiction outside New England and California. It is 2012, and this jurisdiction has 
just established an energy efficiency resource (EER) that sets a goal of saving 2% a year, starting 
in 2016 and going through 2020. Using the model, an administrator can estimate the 
jurisdiction’s cost of achieving the goal set forth by the EER. Figure 5 outlines the steps to get to 
forecast costs for energy efficiency. 
 

Figure 5.  Work Flow to Calculate Forecasted Energy Efficiency Costs 
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The only other data required, besides the annual savings percentage goals, is a load 

forecast that excludes DSM. The target savings percentages applied to the three polynomial 
terms of the equation, along with other assumptions regarding the program administrator, return 
forecast costs per annual kWh. Next, the annual percentage savings are multiplied by the 
projected load to get the forecast of annual savings. Finally, the forecast cost of energy is applied 
to the forecast savings to get a total cost to the administrator for meeting the EERS’ goals. Figure 
6 presents the results for the administrator. 

 
Figure 6. Example Calculations of EERS Costs 

 
The administrator is assumed to start with a sales base of 1,000 GWh in 2012, and is 

projected to have load growth of 1.8%, going forward. Savings started at 0.25% in 2012, went to 
0.5% in 2013, 1% in 2014, and 1.5% in 2015, before reaching 2% in 2016 and beyond.  Cost per 
annual kWh started at $0.41, before dropping by more than half to $0.18 in 2016, and then began 
to creep up to $0.21 by the end of the analysis period. Although costs per unit savings went 
down, the total cost to the administrator continued to grow as the magnitude of savings continued 
to grow. 

 
Limitations, Future Research, and Additional Applications 

 
The primary limitation of the model is that it applies only to program administrator 

investment costs of energy efficiency resources. It does not include the costs participating 
customers contribute toward efficiency resource acquisition; nor does it include cost savings that 
participants experience. The cost savings to participants include lower operation, maintenance, 
and replacement costs associated with high-efficiency equipment, which often has much longer 
life expectancies than standard equipment. Efficiency program administrators do not widely or 
consistently report information on customer costs and cost savings.  Any attempt to forecast total 
resource costs of efficiency investments will need to estimate the net participant costs that would 
be associated with the program administrator costs predicted by the model presented here. 

Another limitation worth highlighting is variability in the reliability of the reported 
savings data. Some jurisdictions such as Vermont and California are subject to rigorous 
measurement and verification procedures; other jurisdictions have less-stringent procedures.  
Uniform standards of reporting would also reduce the time and error in deriving usable data on 
costs and savings, particularly by customer sector. 

Assumptions Year Savings

2011$ /

kWh‐yr

Load Forecast

(GWh)

Incremental Annual 
Savings (GWh)

Costs (Millions

2011$)

First Year 2009 2012 0.25% 0.41$  1,000              2.5                      1.02$              
Nonres 0 2013 0.50% 0.35$  1,018              5.1                      1.77$              
CA 0 2014 1.00% 0.26$  1,036              10.4                    2.69$              
NE 0 2015 1.50% 0.20$  1,055              15.8                    3.23$              
Planned 1 2016 2.00% 0.18$  1,074              21.5                    3.77$              
Initial Load (GWh) 1,000 2017 2.00% 0.18$  1,093              21.9                    4.00$              
Load Growth 1.8% 2018 2.00% 0.19$  1,113              22.3                    4.24$              

2019 2.00% 0.20$  1,133              22.7                    4.48$              
2020 2.00% 0.21$  1,153              23.1                    4.73$              

5-348©2012 ACEEE Summer Study on Energy Efficiency in Buildings



Improving the model means, first and foremost, expanding the data set. As time passes, 
energy efficiency investment continues to grow, future plans change, and new data become 
available. The US EIA has released 2010 data from Form EIA-861, and program administrator 
regulatory reports on activity from 2011 will begin to trickle in over the next few months. In 
addition, planned spending and savings fluctuate widely, and the data will frequently need to be 
updated to stay current.  

Another way in which the data could be improved is in the characterization of the first 
year of portfolio operation. For a portion of administrators, the First Year data does not 
correspond with the first year in which they began pursuing energy efficiency, but instead with 
the first year that data was added to the collection. Fixing this could lead to improvements in the 
descriptive power of the model. The effort required to collect, analyze, clean, and document the 
continuous stream of information is substantial. The rate and quality of data collection could be 
improved through more open collaboration among regulated jurisdictions with investments in 
energy efficiency. 

Although the model is statistically robust, the forecast error is necessarily higher, the 
further out-of-sample it is used to predict costs. Additional high-performance portfolio 
experience information is needed to narrow the confidence interval around costs associated with 
top-tier savings performance (that is, portfolios achieving annual energy savings of 2% of 
electricity sales and above). Future analysis will estimate the forecast standard error so that users 
can calculate a confidence band around the predicted costs. 

The authors have identified several areas in which the model might be enhanced. One 
concern is the evidence of residual serial autocorrelation (discussed in the Appendix). Other 
potential areas of exploration include: (1) testing interaction terms combining continuous 
explanatory variables (such as maturity) with dichotomous variables (such as region); (2) further 
manipulating the data using power transforms of variables6; and (3) examining non-linear 
regression models such as logarithmic formulations (for example, single-log or log-log 
specifications). 

Ultimately, the model described in this paper has many applications beyond the simple 
example presented here. It could be used as a benchmarking tool for administrators, or as a way 
to evaluate past results. The binary variables and residual values can be used to establish cost 
ranges for sensitivity analysis. Forecast unit costs can be combined with lifetimes to derive a cost 
of energy efficiency comparable to supply costs, something that is extremely important for 
evaluating DSM in the context of long-term resource planning.  These are just a few of the ways 
in which an understanding of the complex relationship between energy efficiency spending, 
savings, time, customer sector, and location can benefit anyone involved in the business of 
energy efficiency resource acquisition planning, management, or oversight. 
 
Appendix: Serial Residual Autocorrelation 
 

Another important way to analyze the regression is by examining its residual errors, or 
the differences between the values predicted by the model and the actual values in the data set 
used to find the linear regression. Figure 7 maps the residual errors for the model against % 
Savings and shows that the spread of errors stays relatively consistent for different savings 
levels, with the largest residual errors overestimating costs. 
                                                 
6 Power transforms (such as the Box-Cox transformation) are power functions (such as y=x2) that can be applied to 

data so that rank is preserved and variance may be stabilized (making the data more normally distributed). 
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Figure 7.  Residual Errors of Best-Fit Model 

 
Finally, The Durbin-Watson (D-W) statistic is a way to test for the presence of 

autocorrelation in the residuals of a regression. Autocorrelation is not desirable because it 
indicates that there might be dependencies between parameters in the model, which can bias 
estimated coefficients and their standard errors. The D-W statistic lies between 0 and 4, with a 
value of 2 indicating no autocorrelation, a value greater than 2 indicating negative correlation, 
and a value less than 2 indicating positive autocorrelation (Draper & Smith, 1998). Since the 
Durbin-Watson Statistic requires an ordered data set, the test was run for the regression using the 
data set ordered by each variable in the data set. The summary of the test results that had p-
values below 1% (that is, a 99% confidence level) is shown in Table 2. 
 

Table 2.  Summary of Durbin-Watson Statistics for Regression7 
Minimum Maximum Median Mean 

0.81 1.66 1.29 1.33 

 
Usually, the Durbin-Watson test is used on regressions of time series data. The test 

results for the data set ordered by the Year and Maturity variables, the two time series variables 
in equation, were approximately 1.5, higher than the median and mean values. In general, these 
results indicate some evidence of serial autocorrelation, and one of the goals of future research 
should be to find some way to get the values of the Durbin-Watson statistic closer to 2. 
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