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ABSTRACT 

Modeling commercial building energy usage can be a difficult and time-consuming task. 
The increasing prevalence of optimization algorithms provides one path for reducing the time 
and difficulty. Many use cases remain, however, where information regarding whole-building 
energy usage is valuable, but the time and expertise required to run and post-process a large 
number of building energy simulations is intractable. A relatively underutilized option to 
accurately estimate building energy consumption in real time is to pre-compute large datasets of 
potential building energy models, and use the set of results to quickly and efficiently provide 
highly accurate data. This process is called metamodeling.  

In this paper, two case studies are presented demonstrating the successful applications of 
metamodeling using the open-source OpenStudio Analysis Framework. The first case study 
involves the U.S. Department of Energy’s Asset Score Tool, specifically the Preview Asset 
Score Tool, which is designed to give nontechnical users a near-instantaneous estimated range of 
expected results based on building system–level inputs. The second case study involves 
estimating the potential demand response capabilities of retail buildings in Colorado. The 
metamodel developed in this second application not only allows for estimation of a single 
building’s expected performance, but also can be combined with public data to estimate the 
aggregate DR potential across various geographic (county and state) scales. In both case studies, 
the unique advantages of pre-computation allow building energy models to take the place of top-
down actuarial evaluations.  

This paper ends by exploring the benefits of using metamodels and then examines the 
cost-effectiveness of this approach. 

Introduction 

Building energy models (BEMs) serve an important role as a key enabling technology for 
evaluating various building design alternatives and their impact on energy use. In a new-building 
context, these models allow for building experts to understand the impact of various decisions on 
the future energy use of the building. In retrofit contexts, BEMs allow for building experts to 
identify the most cost-effective energy conservation measures (ECMs) for specific buildings. 
Several tools exist to address these use cases. In this paper, we present two case studies that 
make extensive use of one such tool: OpenStudio. A software development kit funded by the 
U.S. Department of Energy (DOE), OpenStudio allows users to interact with the EnergyPlus 
whole-building energy simulation engine to determine the energy consumption of buildings 
using modern scripted programming languages (OpenStudio 2016 and EnergyPlus 2016).  

A unique aspect of OpenStudio is a document called an OpenStudio measure. The 
measure is a Ruby script that accepts user inputs, loads an OpenStudio or EnergyPlus model, 
performs actions on the model, and then saves the changed model back to an OpenStudio or 
EnergyPlus model (Long, 2014). Some examples of OpenStudio measures that articulate the 
underlying BEM are measures such as adjusting a building’s window-to-wall ratio to a user-
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specified input, adding stories to a building, or increasing the occupant density by a user-defined 
multiplier. OpenStudio measures can also be ECMs such as adding daylighting controls to a 
building, changing fans from constant to variable speed, or increasing envelope thermal 
properties. The key aspect of an OpenStudio measure is that it can programmatically apply 
simple user arguments to generate complex changes in the BEM. In this way, OpenStudio 
measures become a programmatic interface for those BEMs that use OpenStudio and 
EnergyPlus. 

Within industry today, two well-known applications of programmatic interactions with 
models are calibration and optimization. The goal of calibration is to align the BEM of a specific 
building with a measured value—often the monthly utility bill. BEM calibration parameters, 
such as R-values, component efficiencies, infiltration rates, and building schedules, can be 
difficult to accurately identify, and as a result they introduce uncertainty into the BEM. To 
reduce the uncertainty and minimize the error between the BEM and the utility bill, optimization 
algorithms vary these parameters. The result of this process, ideally, is a calibrated BEM. 

Having achieved a calibrated energy model, users can then use ECMs to maximize 
building energy savings while minimizing cost within the constraints of the retrofit project. The 
interactive effects that can occur between various combinations of ECMs often complicate this 
task. Optimization algorithms can be used to select the best combination of ECMs for a retrofit 
project given various parameters, such as the building owner’s budget and required payback 
period. In both of these programmatic use cases (calibration of BEMs and optimization of ECMs 
for already-calibrated BEMs), the inputs of a programmatic BEM tool, like OpenStudio, and its 
energy-use outputs enable powerful workflows. In many situations, however, clearly defined 
inputs for BEMs are not available and, as a consequence, information about optimal sets of 
ECMs is significantly less clear. 

Retrieving actionable insights from these problematic situations requires a retooling of 
existing high-level models (or the results of said models) to enable a wider array of workflows. 
Metamodels offer a more flexible workflow that is achieved through wrapping the 
imperfect/inexact results of BEM simulations inside of a metamodel created using the random 
forests machine-learning technique. This metamodeling process allows for less-well-defined 
inputs to provide valuable, even actionable, outputs by extracting the crucial intelligence 
contained in simulated BEMs.  

In this paper, we explain the concept of a metamodel and present an intuitive example to 
clarify the role metamodels play in providing useful outputs from ambiguous inputs. We then 
present the commonly used infrastructure: first the OpenStudio Analysis Framework (OSAF), 
and second, random forests and their use as the metamodel regression engine. Next, we describe 
two case studies in which metamodels based on BEM simulations provide simple and valuable 
outputs to complex problems. The first examines the Asset Score Preview tool recently released 
by DOE, and the second demonstrates a framework for the analysis of aggregated DR 
capabilities. In each study, we examine the way in which metamodels enable actionable outputs 
with minimal inputs. Finally, we more generally discuss the useful attributes of a metamodeling 
workflow based off of BEMs. 

The use of metamodeling to provide insight from unclear inputs in the context of BEMs 
is not new, and has been previously considered by Eisenhower 2011 and Romani 2015. In 
addition, a critical aspect of metamodeling is the creation of regression engines. Regression 
engines have been widely employed in the context of building energy, notably for simplified 
prediction methodologies for optimal ECM recommendations and energy use forecasting. An 
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excellent overview of this area of research and practice is presented in Kissock et al. 2003, 
Harbel and Thamilseran 1998, and Granderson and Price 2013. 

What Is Metamodeling? 

A metamodel, in the context of this paper, is a model that contains the results of 
previously run models—these simulation results are referred to as the underlying results set. In 
both case studies examined in this paper, the underlying results set is a large collection of 
previously computed building energy model simulations. While these results have inherent 
value, recasting them in a metamodel can significantly increase their value in use cases 
containing ambiguous inputs and outputs. The metamodel can have inputs different from the 
actual energy models, can base its output on the entire pre-computed results set, and is orders of 
magnitude faster than standard BEM simulations. 

 

Figure 1: Diagram of a generalized metamodeling process using pre-computed building energy models. 

In this paper, we define metamodels by four characteristics: the underlying model, the 
method used to build the metamodel regression engine, the inputs to the metamodel, and the 
outputs from the metamodel. Figure 1 shows a generalized example of a metamodel in the 
context of BEMs. Here, the underlying model is a set of results pre-computed from BEMs that 
have inputs of window-to-wall ratio, occupant density, and number of floors. The inputs to the 
metamodel are user-specified characteristics circled below—specifically, high window-to-wall 
ratios and high occupant density. The specification for number of floors is left undefined. Using 
all three input specifications, the metamodel then selects those results in the pre-computed 
building set that reflect the user’s input specifications. In Figure 1 the buildings that only 
partially match the user-defined inputs have been retrieved from the underlying results set; 
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however, they are given a lesser weight in the consideration of results because they don’t meet 
both the predefined criteria. The metamodel then takes the results of the buildings that it has 
found to be similar to the user’s query and returns an amalgamation of the results back to the 
user.  

Figure 1 shows that the metamodel can retrieve the pertinent BEM results given varied 
and potentially unspecified user inputs. The manner in which these results are processed and 
returned to the user, however, can be complicated but is critical for the success of the 
metamodel. In both presented case studies, a bootstrapping methodology is used to determine the 
likely output energy-use intensity (EUI) of the user-defined building as a probability distribution. 
In this approach, a regression model is built that considers input building characteristics 
(window-to-wall ratio, occupant density, and number of floors) and outputs a specified result 
from the simulation (EUI). Through running the regression engine on a large variety of possible 
input values given the user’s selections, an equally large number of output estimates are 
calculated and used to create a probability distribution of the likely output result of the building. 

This regression engine is the core of the metamodel. When a user’s inputs are entered, the 
metamodel generates a set of potential datapoints—that is, combinations of allowable 
characteristics of the model. In the example above, the datapoints returned would have a fixed 
high window-to-wall ratio and occupant density, but no restrictions placed on the number of 
floors. The datapoints are then run through the regression engine, and the results form a 
distribution—namely, a variety of answers representative of the user’s input. This distribution 
then serves as the output of the metamodel: a range of EUI.  

Another way of considering a metamodel is as a simple wrapper model that interprets 
potentially ambiguous inputs and utilizes the underlying pre-computed results to produce the 
output. In this representation, the metamodel serves as a gray box surrounding a large number of 
pre-computed BEMs. The metamodel utilizes the relationships between the inputs and output of 
the BEMs embedded in it to take uncertain definitions from users and return results that reflect 
that uncertainty. In this way, the metamodel allows for a distribution of input variables to return 
a distribution of output metrics in close to real time. 

Although metamodel implementation is often highly complex, the underlying goal is 
generally quite simple. In the example shown in Figure 1, the goal was to identify a distribution 
of potential outcomes based on the pre-computed BEMs, constrained by the user-defined inputs 
of buildings with high occupant density and window-to-wall ratios. In the case studies presented 
below, the goal is ultimately to provide actionable information to various building energy–
related stakeholders, given uncertain and partial user inputs, through the use of pre-computed 
BEMs as a basis for metamodels. 

This section presents an overview of the underlying models used for these case studies as 
well as the procedures used to generate the metamodels. OpenStudio measures are used to define 
building parameters that can be varied (for example, window-to-wall ratio, plug loads, and air-
handler fan efficiency). Thousands of unique simulations are run with varying parameters, and 
specified results are returned. In the first case study, adjusted source EUI was the desired result, 
while in the second study, peak and total DR contingency event savings are of primary interest. 
These sets of inputs and outputs are used to build a random forest regression engine, which is a 
type of machine-learning algorithm. When given an input, the random forest regression engine 
returns an output in near-instantaneous time, and this result is postprocessed to create an 
actionable result for the user. This entire process is called a metamodel. 
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Tools Employed to Create a Metamodel 

Two tools were primarily used to create the metamodels presented in both studies. The first, the 
OpenStudio Analysis Framework (OSAF), is a collection of open-source software tools 
developed by the National Renewable Energy Laboratory (NREL) to support its continued work 
in the field of large-scale commercial building energy modeling. The second tool is the random 
forest machine-learning procedure initially developed by Leo Breiman and Adele Cutler at the 
University of California, Berkeley. 

OpenStudio Analysis Framework 

The OSAF is a set of server and software tools for defining and running large-scale 
analyses of whole-building energy models. Presently, the most accessible user interface is a 
spreadsheet that enables multiple types of analyses, including parameter sampling, calibration, 
optimization, and sensitivity analysis. Due to the large size of the simulation set required for 
metamodels, simulations are run using the OSAF on Amazon’s Elastic Cloud Computing (EC2) 
platform. A number of visualizations are generated to help users understand the results of the 
simulations, including parallel coordinate, radar, and Pareto plots. The OSAF, at its core, serves 
as an enabling technology for applying measures to whole-building energy models, both in bulk 
user-specified ways and in interactions with particular algorithms. The process by which these 
analyses are run is detailed in Figure 2 (Long et al. 2014). Enterprise and advanced users can 
install the OSAF platform on a workstation or, with significant expertise, a supercomputer. 

 

Figure 2: OpenStudio Analysis Framework system diagram. 

Each simulation is executed by the worker node managed by the OSAF server. In each 
simulation, a seed OpenStudio Model (OSM) file is loaded, and then each OpenStudio measure 
is run with server-defined variable and argument values until all OpenStudio measures have been 
run. At this point, nearly all changes to the OSM have been made. The OSM is then translated 
into an EnergyPlus Input Definition File (IDF), and any additional measures, such as advanced 
controls, are then executed. Once these measures have run, EnergyPlus is called to simulate the 
final IDF. The results are passed through a standard-output reporting measure, and then through 
any additional reporting measures defined in the user-defined workflow. The set of variable 
measure inputs for the specific simulation as well as the high-level results of the simulation are 
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then passed back to the server and registered in the results data table. Additional file outputs of 
reporting measures can be flagged to be available to the user as a download.  

In the first case study, the results data table was used to populate the metamodel. The 
variable measure inputs were defined as the input of the random forest regression engine, and the 
output of the random forest regression engine was defined as the adjusted source EUI of the 
building. In the second case study, the parameters of the random forest regression engine were 
slightly more complicated. The DR contingency potential of each simulated building was 
evaluated through a simulated DR event for each day of a yearly simulation. The input associated 
with each event was defined as the set of environmental variables at the beginning of a day’s DR 
event—such as dry-bulb temperature and direct isolation—as well as the measure inputs 
associated with that simulation. The output of each event was defined as the maximum kilowatts 
shed during the event period and the total kilowatt-hour savings during the event. 

Random Forests 

 A random forest is a machine-learning model called an ensemble learner. In general 
terms a random forest is a large collection of independent decision trees that acts as a regression 
engine. The random forest as a whole achieves a high degree of reliability and accuracy from the 
diversity in the set of trees; each tree is trained on a random subset of the data initially provided 
to the random forest as a training set. Each tree attempts to minimize the variance in the training 
dataset at each split, thereby increasing the certainty of the result at each node of the tree. The 
details of the random forest machine-learning procedure are described in mathematical detail in 
Breiman 2001, and an excellent introduction to the topic can be found in Breiman and Cutler 
2016. 

A variety of machine-learning techniques could have been used to achieve similar 
outcomes to those described in the two case studies; however, the use of random forests was 
primarily driven by its ease of development and speed of results. While many machine-learning 
techniques are highly sensitive to various tuning parameters, random forests have only two main 
tuning parameters, and both have been shown by Breiman to be relatively insensitive. 
Additionally, it is worth noting that random forests are nonlinear and can model categorical 
variables (names rather than numbers)—such as heating fuel type, where the options are either 
electricity or gas. These two properties of random forests enable them to respond well to wide 
input ranges and alleviate the need for complex preprocessing or postprocessing of the data. 

Case Study: Asset Score Preview 

Motivation 

The U.S. DOE’s Asset Scoring Tool is a tool aimed at helping building owners, 
operators, and tenants to evaluate the energy-efficiency potential of a building’s assets (Wang 
2015, and 2016). To achieve this, the building assets are defined as the set of building systems 
that function independently of the occupant and are assumed to experience no degradation in 
performance due to lack of maintenance. The output of the Asset Score Tool is a rating on a 10-
point scale, where a score of 10 represents buildings with high potential efficiency, and a score 
of 1 represents buildings with a low potential for efficiency. To allow for a high level of 
accuracy when rating the Asset Score of commercial building stock, a relatively exhaustive 
dataset of building characteristics is required. To avoid the Asset Score Tool’s use being limited 
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to building owner/operators who have access to this level of data, it was decided to develop a 
“lite” version of the tool for owners/operators with less access to technical specifications. The 
lite version requires fewer inputs with reduced complexity from the user (the minimum being 
building vintage, location, floor-area, orientation, number of stories, and building-use type) and 
returns a range of possible scores as the output. A metamodel provides an excellent framework to 
solve the unusual requirements of this problem, and was developed and deployed as Asset Score 
Preview (BTO 2016). 

The challenges involved in developing the functionality for Asset Score Preview stem 
from the need to translate a nonspecific user-supplied variable, like building vintage, into a 
useful modeling characteristic of building performance, like R-value. The full Asset Scoring 
Tool uses OpenStudio measures to incorporate 38 user inputs—many of which require a building 
engineer to obtain—into an energy model, and then runs a full simulation of the building. For 
Asset Score Preview, however, the input-gathering burden placed on the user is limited to 
general information about the building and an indication of agreement or disagreement with 
default values of building systems such as envelope construction type, lighting technology, 
HVAC system type, and service water-heating fuel type. The properties of a building’s 
subsystems can be set to nondefault values when the user has particular knowledge of the values. 
The high-level inputs of the Preview allow nonbuilding experts to interact with and gain 
confidence in the tool, and may encourage them to perform a full Asset Score audit in the future. 

Method 

The first step in defining the metamodel for Asset Score Preview is specifying the inputs 
and outputs. The required inputs are use type, location, vintage, orientation, conditioned floor 
area, and number of floors. Asset Score Preview provides the remaining subsystem inputs as 
defaults. The user then has the option to either confirm or change the default. If the user does 
neither, the input is flagged as uncertain for the subsequent analysis. The underlying result set is 
a large collection of simulations run on various models across all climate zones. The metamodel 
holds the required and confirmed subsystem inputs constant and considers the range of all 
uncertain subsystem inputs. Details on this process can be found in Goel et al. 2016b. As an 
example, if a user confirms that a retail building in Denver has T8 lighting, but is uncertain of all 
other parameters, the metamodel considers the full range of subsystem inputs except for lighting 
power density and the required inputs. The metamodel returns a distribution of adjusted source 
EUIs that are translated into a potential Asset Score range. For a detailed description of the 
process by which this was achieved, please refer to Goel et al. 2016a and 2016b and Long et al. 
2015. 

The level of detail incorporated in the underlying models is an important characteristic of 
a robust metamodel. While some details are easy to account for, such as translating user-defined 
T8 lighting into lighting power density, other details, such as inferring a building’s geometry 
from unspecified volumetric conditioned space and envelope surface area, are complex and 
intractable. The key to problems such as unspecified geometry is to make sure that the range of 
variables considered in the underlying result set is broad and dense enough to capture all 
potential user inputs. For a more lengthy discussion on how this problem was approached in 
Asset Score Preview, please refer to Goel et al. 2016a. 
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Outcomes 

Although the results of a metamodeling approach can be difficult to demonstrate, in this 
case, an excellent example is provided by one of the pilot buildings used to test the Asset Score 
Preview tool. The distribution of adjusted source EUIs returned by the Asset Score Preview 
metamodel under various user-confirmed input conditions is shown in Figure 3. In each test case, 
the default subsystem definitions were set to the correct values while the user’s confirmation was 
varied between the samples. As can be seen in the purple density plot, when no inputs were 
certain, the range of possible values was quite wide—from 100 to 260 kBTU/sqft/yr. When the 
HVAC inputs were certain, the upper range of possible EUIs was scaled back by approximately 
30 kBTU/sqft/yr—from 100 to 220 kBTU/sqft/yr. When the lighting technology was certain, the 
range of potential EUIs was drastically reduced—from 155 to 260 kBTU/sqft/yr—and when all 
inputs were fixed, the range was reduced to 170 to 200 kBTU/sqft/yr. In addition, the most likely 
outcome was closely aligned with the EUI returned by a full Asset Score simulation: 185 
kBTU/sqft/yr. What is even more critical than the accuracy of the metamodel is its ability to 
respond dynamically to user input. In this way, the metamodel can serve its primary purpose: to 
encourage users to perform a full Asset Score evaluation and to identify which buildings might 
benefit most from additional examination. 

 

Figure 3: Metamodel results for varying user-certainty inputs when previewing the Asset Score of a medium office 
building with a packaged VAV system. 
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Case Study: Demand-Side Grid Integration and Development (DSGRID) 

Motivation 

The commercial building stock has the potential to provide several grid-related services, 
including contingency, flexibility, regulation, and capacity, through DR events. The maximum 
potential capacity for each grid service needs to be quantified to understand the overall potential 
for building-grid interactions. NREL has funded an internal project to begin to model the 
aggregate potential capacity reserves, in megawatts and megawatt-hours, provided by the 
commercial building stock. The project first uses the OSAF to model large sets of buildings and 
then uses a metamodel to aggregate the results of the individual models by geographic region. 
The goal of this project is to enable analysis of building-stock DR potential for various use cases 
such as integrated resource plans, national projections, and policy decisions using physics-based 
BEMs. In addition, the physics-based models can provide inputs to various grid-modeling 
software tools to enhance their fidelity. 

Method 

The process of analyzing the DR potential of a specific building type across a geographic 
region can be broken down into four separate steps. First, OpenStudio measures are applied to 
the baseline models to vary building parameters such as lighting power density, HVAC system 
efficiencies, and building envelope parameters. Second, a single DR event is modeled each day 
of the annual simulation for each model in the set of articulated BEMs. Third, the results of each 
simulation have to be processed to determine both the maximum reduction in load during the 
event and the total energy not used during the event (maximum shed and total savings, 
respectively). These results, merged with information about the articulated baseline model, form 
the pre-computed results used as the underlying results set. Fourth, the properties of the 
commercial building stock of interest are estimated using available datasets. The results of this 
step represent the inputs to the metamodel. As in the previous case study, the metamodel uses a 
random forest regression engine. 

The case study estimates the contingency reserves potential of a thermostat setpoint 
setback reduction in the stand-alone retail building-type segment in Colorado. The building stock 
examined was represented by various vintages of the stand-alone retail reference model with 
articulated envelope, lighting, and HVAC properties. To represent the highly variable weather 
conditions of Colorado, 26 weather files from the state were sampled to create the simulations. 
The metamodel inputs were derived from a combination of the U.S. Energy Information 
Administration’s Commercial Building Energy Consumption Survey (CBECS) 2003 microdata 
files and the U.S. Census’ County Business Patterns (CBP) data. This work is currently in 
publication, and is expected to appear in 2017. 

Outcomes 

The metamodeling approach used in the DSGRID case study allows for a minute-by-
minute analysis of the HVAC DR potential of retail buildings in Colorado on a county-by-county 
basis. The unique aspects are the granularity of the results on both a temporal and geographic 
scale. A combination of CBECS and CBP data provides estimates of the number of buildings in 
each county in Colorado, as well as estimates of building vintage. A variety of building 
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characteristics and environmental factors remain undefined; however, they were predicted across 
their entire range.  

In this case study, the metamodeling approach is also used to provide input files to the 
PLEXOS modeling software, which is the primary grid-modeling tool used by NREL researchers 
for high-renewable penetration studies. PLEXOS requires a CSV input file specifying the 
expected available contingency reserve at each hour of the year. The metamodel generates the 
input file by weighting the weather files to represent the relative geographic distribution of retail 
buildings in Colorado that are modeled at each time step. Figure 4 shows the total contingency 
potential of these buildings in full geographic granularity during a week in July, with each 
stacked color representing the potential contingency provided by a specific county. The total 
potential at each time step can be used to inform high-level analyses, while the county-by-county 
results can be used in finer-granularity grid studies.  

The unique aspect of the metamodel in this use case is its ability to provide an aggregated 
representation of the results of BEMs to a grid-modeling tool through an easily defined interface. 
To generate resources for other grid-modeling tools, the metamodel results simply need to be 
processed into a form acceptable for that specific tool. Once again, the need to develop 
additional whole-building energy simulations is avoided. The metamodel, in short, becomes a 
currency of exchange between building-focused and grid-focused analysis and modeling tools. 

 

Figure 4: Example of the time series output for PLEXOS based on retail HVAC DR resources in Colorado. 

The Benefits of Metamodeling 

The Asset Score Preview and DSGRID case studies present a general framework in 
which metamodels take the results of detailed BEMs and use them to derive actionable 
information for wider applications. There are several aspects of metamodels that make them 
attractive for use in extending the applicability of BEMs. First, given current cloud computing 
infrastructure, the actual costs associated with the pre-computed underlying results set are 
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relatively minimal. Second, the flexibility of inputs provided through the use of sampling in the 
metamodel allows for a single metamodel to be used in a variety of frameworks. Finally, the 
modularity provided by the use of automated BEM creation and simulation using the OSAF 
facilitates high iteration speed and version control of the results. 

Cost 

One of the most critical enabling technologies for the approach described in this paper is 
the low cost of cloud computing. The OSAF is currently deployable on the Amazon Web 
Services’ EC2 platform, and the results presented for both case studies relied on this 
computational resource (Amazon 2016). At the time of writing, a 32-core server (on-demand 
compute-optimized c3.8xlarge instances) costs $1.68 per hour of usage. The average 
computation time of an Asset Score Preview building model was approximately five minutes. 
Assuming an additional 50 percent overhead rate for the creation, provisioning, and destruction 
of servers, the total cost of the analysis is approximately $1,800, which is negligible in 
comparison to staff costs associated with the analysis. 

Flexibility 

Developing highly complex models can be difficult to justify, especially if the models are 
only applicable in one use case. Metamodels, however, are only truly limited by the accuracy and 
parameter space of the underlying results set, as well as the accuracy of the regression engine 
built using this results set. All regression engines used in the case studies presented had R2 
values above 0.90 out of the box, with an average R2 of 0.95. EnergyPlus, the simulation engine 
that OSAF relies on, is generally accepted to be highly accurate, although absolute measures of 
this are difficult (Judukoff et al. 2011). The input criteria to the metamodels are incredibly 
flexible due to the ability to sample the regression engine across the range of each unspecified 
variable. Additionally, the outputs can be postprocessed to provide various desired outcomes, as 
presented in the DSGRID case study. 

Modularity 

The complexity of whole-building energy modeling ensures that base models and the 
measures interacting with them can always be improved. Quite often this means that labor-
intensive tasks must be performed throughout the entire workflow chain every time revisions are 
made. In the workflow presented in both case studies, the programmatic nature of OSAF, along 
with the separation of interfaces provided by the metamodel regression engine, makes whole-
building energy-modeling iteration a relatively painless process. As an example, when the 
control strategies associated with the thermostat setpoint adjustment measure in the DSGRID 
case study needed to be changed, it was a simple task to insert the updated measure, rerun the 
simulations on EC2, and rebuild the metamodel regression engine on the new underlying dataset. 
No changes were required to the interfaces with the metamodel. This property of the described 
workflow has an important secondary effect: it is easy to version the results produced by the 
metamodel by incrementing the version whenever the underlying model or the interface to the 
metamodel is updated. This enables reproducible results, which is a critical requirement in a 
variety of use cases. 
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Conclusion 

The two use cases described in this paper demonstrate how metamodeling can use data 
provided by BEMs to produce actionable results for nonbuilding scientists. Due to the fast run 
times of the random forest regression engine and the detailed nature of the underlying results set, 
users are able to access insights using metamodels that they may not have had the expertise or 
wherewithal to otherwise discover. This process can also serve as an excellent way to extract 
new value from existing BEM result sets.  

Using cloud computing resources, the process used to generate the underlying results sets 
is cost-effective and removes the need for extensive local computing resources. In addition, 
modular workflows allow users to quickly change measures and rerun the analysis in a 
versionable and traceable manner, increasing robustness and reducing user errors. In each case, 
the ability for metamodels to work with ambiguous inputs and provide valuable insights through 
realistic uncertainty proves to be reliable and consistent. The usefulness of metamodels may have 
a larger impact in other areas; however, each use case needs to be scrutinized with care to ensure 
that the accuracy and vastness of the parameter space are reasonably approximated. This required 
scrutiny highlights the critical role that building scientists and energy engineers will continue to 
play in the evolving building energy analytics market, regardless of the ongoing proliferation of 
low-cost computing and highly automated learning algorithms. 

Acknowledgements 

The authors wish to thank Supriya Goel, Nora Wang, Juan Gonzales, Noel Merket, 
Elaine Hale, Brady Stoll, Ian Dobber, and Ambarish Nag for their critical work with regards to 
the presented case studies, as well as the development teams for OpenStudio and EnergyPlus. 

Citations and References 

Amazon. 2016. https://aws.amazon.com/ec2/pricing/. (Accessed on 8 March, 2016). 

ASHRAE (American Society of Heating, Refrigeration, Air Conditioning Engineers). 2004. 
ASHRAE Standard 90.1. Atlanta, GA. 

BTO (Buildings Technology Office, U.S. Department of Energy). 2016. Asset Score Preview. 
https://buildingenergyscore.energy.gov/buildings. (Accessed on 6 March, 2016). 

Deru, M., K Field, D. Studer, K. Benne, B. Griffith, P. Torcellini, B. Liu, M. Halverson, D. 
Winiarski, M. Rosenberg, M. Yazdanian, J. Huang, and D. Crawley. 2011. U.S. Department 
of Energy Commercial Reference Building Model of the National Building Stock. National 
Renewable Energy Laboratory. 

Eisenhower, B., Z. O’Neill, S. Narayana, V. Fonoberov, and I. Mezic. 2012. “A Methodology for 
Meta-Model Based Optimization in Building Energy Models.” Energy and Buildings 47: 
292–301. 

EnergyPlus. 2016. http://energyplus.net (Accessed on 8 March, 2016). 

12-12 ©2016 ACEEE Summer Study on Energy Efficiency in Buildings



Granderson, J. and P. Price. 2013. Development and Application of a Statistical Methodology to 
Evaluate the Predictive Accuracy of Building Energy Baseline Models. Lawrence Berkley 
National Laboratory. 

Goel, S., H. Horsey, and N. Long. 2016a. “Building Efficiency and Uncertainty Analysis with 
DOE’s Asset Score Preview.” 2016 ASHRAE/IBPSA-USA Building Simulation Conference, 
Salt Lake City, UT. 

Goel, S., N. Wang, H. Horsey, and N. Long. 2016b. “Streamlining Building Efficiency 
Evaluation with DOE’s Asset Score Preview.” Proceedings of the ACEEE Summer Study. 
Asilomar, CA. 

Haberl, J. and S. Thamilseran. 1996. “Predicting Hourly Building Energy Use: The Great Energy 
Predictor Shootout II: Measuring Retrofit Savings—Overview and Discussion of Results.” 
ASHRAE Transactions, 102 (Pt. 2). 

Haberl, J., A. Sreshthaputra, D. Claridge, and J. Kissock. 2003. “Inverse Modeling Toolkit: 
Applications and Testing.” ASHRAE Transactions, 109 (Pt. 2). 

Judkoff, R., B. Polly, and M. Bianchi. 2011. The Building Energy Simulation Test for Existing 
Homes (BESTEST-EX) Methodology. NREL-51655, National Renewable Energy Laboratory 

Long, N., B. Ball, K. Fleming, and D. Macumber. 2014. Scaling Building Energy Modeling 
Horizontally in the Cloud with OpenStudio. 2014 ASHRAE/IBPSA-USA Building Simulation 
Conference, Atlanta, GA. 

Long, N., S. Goel, and H. Horsey. 2015. U.S. Department of Energy’s Asset Score Sensitivity 
and Scale Implementation. Building Simulation 2015, Hyderabad, India. 

OpenStudio. 2016. www.openstudio.net. (Accessed on March 8, 2016). 

Romani, Z., A. Draoui, and F. Allard. 2015. “Metamodeling the Heating and Cooling Needs and 
Simultanious Building Envelope Optimization for Low Energy Building Design in 
Morroco.” Energy and Buildings 102: 139–148. 

USDOE. 2015b. Commercial Reference Buildings. http://energy.gov/eere/buildings/commercial-
reference-buildings. (Accessed 10 January, 2016). 

Wang, N., S. Goel, V. Srivastava, and A. Makhmalbaf. 2015. Commercial Building Energy Asset 
Score System: Program Overview and Technical Protocol (Version 1.2). PNNL-22045 Rev 
1.2, Pacific Northwest National Laboratory. 

Wang, N., S. Goel, A. Makhmalbaf, and N. Long. 2016. “Development of Building Energy Asset 
Rating Using Stock Modeling in the USA.” Journal of Building Performance Simulation. 

12-13©2016 ACEEE Summer Study on Energy Efficiency in Buildings


