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ABSTRACT 

The recent nationwide adoption of smart meters provides a new source of rich data about 
individual household electricity consumption. Data science techniques can extract a variety of 
high temporal resolution, household-specific features from the hourly electricity time series itself 
and in combination with other readily available relevant information, like weather or census data. 
This allows us to observe or estimate important characteristics of household electricity use that 
were previously unobservable. These characteristics and household features have the advantage 
of representing the actual choices and behaviors of households, which can differ substantially 
from stated preferences and subjective information from traditional survey or interview methods. 
The use of data-derived numerical features is common in machine learning but not in traditional 
engineering and econometric models. 

In this paper, we use this technique to help answer a question that is important to program 
implementers: who is likely to respond to my program? In other words, program implementers 
typically use rules of thumb to identify target households (e.g., top 25% of usage from monthly 
bills), and program evaluation typically only identifies the overall average effect. Understanding 
the heterogeneity of program response can help shed light on how and why different households 
respond in different ways, allowing implementers to focus on specific groups, tailor programs to 
speak to the way that households actually behave, and predict the effectiveness of future 
programs for portfolio planning purposes.  

We identify household specific features that explain heterogeneity in response to 
experimental time-of-use and critical-peak-pricing electricity rates. The experiment was 
performed using randomized controlled trials with treatment groups encouraged to enroll into 
new rates. The household responses of interest are metrics related to energy consumption during 
peak hours. We use numerical features derived from pre-treatment smart meter data as covariates 
in an instrumental variable regression, and we find, promisingly, that they can explain 
considerable heterogeneity of treatment outcomes. These results lay the groundwork for using 
smart meter data along with data science techniques to improve program uptake, evaluation, 
design, and targeting. 

Introduction 

A primary goal of demand side management programs is to provide grid resources (i.e. 
avoided consumption) with costs lower than supply-side alternatives. The value of demand side 
resources are calculated by comparing program implementation costs to their benefits. Thus, 
techniques that can either lower implementation costs through more effective planning and 
recruitment or improve savings through the strategic targeting of interventions can significantly 
boost the value of demand side resources. One strategy for doing so is to develop models that use 
customer characteristics to predict enrollment in and savings under specific programs. Such 

12-1©2016 ACEEE Summer Study on Energy Efficiency in Buildings



models can improve program design in three important ways. First, programs can focus 
recruitment efforts on households that are likely to accept program offers or predicted to provide 
better than average benefits to the program. This improved targeting would drive down customer 
acquisition costs and improve program savings. Second, programs can tailor messages and 
framing using household characteristics to improve the salience of offers made to customers. 
Third, program outcomes can be predicted more accurately on an hour-, week-, or year-ahead 
basis. This information can serve grid planners and aid in the design of future programs. 

The challenge is that these household characteristics may be difficult to observe, may 
only be observable indirectly, and typically only represent one snapshot in time rather than 
information on an ongoing basis. Some characteristics, like appliance inventories or 
demographics, can be observed by administering questionnaires, but this is a relatively laborious 
process. Household usage on a monthly basis is much less useful for DR and pricing programs 
than usage on an hourly basis. Through the application of data science techniques to smart meter 
data, household characteristics and their effects on consumption can be estimated before a 
program begins. Figure 1 illustrates the relationship between pre-treatment household meter data 
and estimated features of consumption on its left hand side. 
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Figure 1. Relationship between household characteristics, features, and program response. The smart meter 
data in the pre-treatment period is influenced by household characteristics, external factors, and random 
variation. Machine learning and statistical models can extract features from this smart meter data that 
contain information about household characteristics. Those household characteristics also influence the 
response to demand side management programs, so the household features can be used to explain 
heterogeneity in household responses to programs. 

The pre-treatment smart meter time series for a household is a rich data source, spanning 
working days and holidays, seasonal changes in weather, and variations in other conditions. 
Statistical and machine learning techniques can be applied to this large dataset to extract a 
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variety of features related to household characteristics (Borgeson et al. 2015). For example, the 
average daily minimum consumption contains information about the magnitude of a household’s 
always-on load. Change point regression and load disaggregation models can estimate the 
temperature sensitivity of a household’s electricity consumption, which provides insight into the 
extent to which the household uses electricity for cooling (Borgeson 2013). Customer daily load 
profiles can be clustered into representative load shapes through optimized pattern recognition 
with statistical learning algorithms (Kwac 2014), which leads to segmentation of customers 
based on their daily consumption schedules. There are many such features that summarize key 
aspects of how a household consumes electricity. 

The goal of this work is to use smart meter data and econometric techniques to identify 
which features, statistically derived from consumption data, have bearing on how households 
respond to demand side management programs. Some of these features may be related to the 
capability of a household to respond – for example, households with larger consumption may 
provide a larger absolute response. Other features may be related to the willingness or ease with 
which homes can respond – perhaps homes with a higher degree of variability are more able to 
adjust their schedules to shift load away from peak hours. Finally, features can be related to 
incentives, identifying households that stand to save the most money by altering their 
consumption in the manner desired by the program. This information could improve program 
uptake, improve program impact through directed targeting, and lead to better estimates of 
program potential. 

This paper develops a methodology for using features to shed light on heterogeneity in 
household responses to programs. Specifically, we incorporate features into econometric models 
in order to estimate the causal impact the features have on household response. The method is 
applied to data from a large randomized controlled trial for time-of-use (TOU) and critical-peak-
pricing (CPP) programs. We find that household features can explain considerable heterogeneity 
between different types of households. This finding lays the groundwork for improved program 
design, uptake, and evaluation. 

Background 

The incorporation of greater shares of renewably generated electricity will require a more 
flexible electric grid (Mai et al. 2012). Demand side management has an important role to play in 
providing that flexibility (Strbac 2008; van Renssen 2014; Lund et al. 2015). A national 
assessment of demand response potential in the United States found that the residential sector has 
the greatest capacity for peak load reduction but is the least tapped sector (FERC 2009). There 
are a few key reasons for this gap between potential and actuality. First, the consumption of a 
typical household is small when compared to an industrial or commercial facility. Thus, a large 
number of households must be treated to provide a meaningful amount of flexibility, imposing 
additional requirements for communication, measurement, and administration. Another hurdle is 
that the electrical consumption of a single household is highly uncertain, which makes an 
individual household a less dependable resource (Sevlian and Rajagopal 2014). Thus, there is a 
need to develop and test methods for estimating how much response can be elicited from a large 
group of households and in what ways. Estimating program potential is a difficult task – FERC’s 
assessment of demand response reported major reductions in demand response potential in two 
regions due to lower than expected program performance (FERC 2015). 
 Time-varying rates have gained acceptance as a method for eliciting residential flexibility 
(Cappers, Goldman, and Kathan 2010), and there have been a variety of experimental studies 
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conducted to evaluate how well these rates work (Faruqui and Sergici 2010). These experiments, 
when conducted with a control group, typically focus on estimating the average treatment effect 
on treated groups. However, this approach cannot differentiate between treated households with 
relatively weak or strong responses. The ability to identify such households is of great value. 
Program targeting, and therefore costs, as well as overall program effectiveness could be greatly 
improved with the ability to identify households expected to respond well to a particular type of 
program. There is a developing literature related to explaining the heterogeneity of individual 
responses in a randomized controlled trial (Imai and Ratkovic 2013; Athey and Imbens 2015). 
 A few of the studies reviewed in Faruqui and Sergici 2010 attempt to explain which 
households responded better. They rely on demographic data obtained from surveys instead of 
metered consumption. This paper proposes using features derived from household smart meter 
data to estimate the heterogeneity of household responses to pricing programs. This approach has 
two advantages – smart meter data is already readily available throughout much of the U.S., 
whereas collecting survey and demographic data is a more laborious and costly process. 
Furthermore, survey data relies on what people state about their preferences related to electricity 
consumption, whereas smart meter consumption history reveals how occupants actually chose to 
consume. 
  

The remainder of the paper is organized as follows. The Data section explains the pricing 
program experiment, the data available, and the household responses of interest. The Model 
section describes the instrumental variable regression model used to test the causal effect of the 
pricing treatment heterogeneously across households based on features. The Results and 
Discussion section discusses three specific hypotheses about which features can explain 
heterogeneity and demonstrates their validity in the data. Finally, the Conclusions section 
summarizes key findings and points out directions for extending this work. 

Data 

The data for this paper comes from an experiment conducted by an electric utility 
covering over 100,000 households. The experiment was one type of randomized controlled trial, 
called a randomized encouragement design (“RED”; LBNL and EPRI 2013), in which 
households are randomly assigned to either a treatment group, where they are encouraged to 
enroll in the program, or the control group, in which households are not contacted. Household 
smart meter data is available from before the treatment and during the treatment. The treatment 
began on June 1, 2012. Households were treated using either a TOU plan or a CPP plan. Both 
plans were structured to make consumption during peak hours, defined as 4pm to 7pm, more 
expensive. 

The TOU rates applied the increased peak hour costs on all business days, while the CPP 
rates applied the increased costs on just a dozen critical event days per summer, which were 
communicated to the households a day in advance. Table 1 describes the treatment groups and 
the days analyzed for those groups. Households assigned to an opt-in treatment group had to 
actively opt-in to receive the treatment rate plan. Households assigned to an opt-out treatment 
group were defaulted into the treatment and had to actively opt-out to avoid receiving the 
treatment rate plan. 
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Table 1. Description of treatment groups and days analyzed for these groups. 

Treatment group Period used to compute 
household features 

Days analyzed for computing household response 

Opt-in TOU 6/1/2011 – 5/31/2012 Business days in summers of 2011, 2012, 2013 
Opt-out TOU 6/1/2011 – 5/31/2012 Business days in summers of 2011, 2012, 2013 
Opt-in CPP 6/1/2011 – 5/31/2012 Critical event-like1 days in summer 2011, 

Critical event days in summers of 2012 and 2013 
Opt-out CPP 6/1/2011 – 5/31/2012 Critical event-like1 days in summer 2011, 

Critical event days in summers of 2012 and 2013 

1. There were no actual critical event days in summer 2011 because it was prior to the start of the program, so 
summer business days with weather similar to the critical event days of 2012 and 2013 were chosen. 

The household features are computed using the year’s worth of pre-treatment smart meter 
data. For example, the mean consumption of a given household over the year would be a feature 
for that household. The median of the daily minimum load over the year would be another 
feature. Household features will be denoted by xi  in this paper. 

The goal of the treatment rate plans is to get households to reduce their consumption 
during peak hours. To quantify the effectiveness of the program, a number of different measures 
of household electricity consumption were considered. For each household (i), for each day (t), 
the following metrics were computed: 

 
• eit  =  total electrical energy consumed during the day (kWh) 
• pit  =  total electrical energy consumed during peak hours (kWh) 
• mit  = maximum hourly electrical energy consumption during peak hours (kWh) 
• fit  =  pit / eit , fraction of electrical energy consumed during peak hours 

 
Only fit  is a relative quantity; the other three are absolute quantities. All three metrics are 

computed for each day and each household directly from smart meter data from the pre-treatment 
summer (2011) and the two treatment summers (2012 and 2013). This contrasts with the 
household features, which are derived for each household solely from the pre-treatment smart 
meter data. A feature is a household-specific quantity that is known prior to the beginning of the 
treatment. A metric is a measure of how a specific household consumed electrical energy on a 
specific day, either before or during the treatment period. 

These particular metrics capture aspects of consumption that TOU and CPP programs try 
to influence. In particular, pit  and mit  are directly related to the primary goal of reducing 
electricity usage during peak hours. We may expect to see decreases in fit  if households shift 
consumption away from peak hours and towards off-peak hours, and fit  captures this for both 
large and small households because it is a normalized quantity. 

For a given metric, the response of a treated household is how much that metric changed 
from the pre-treatment period to the treatment period, relative to the same difference in the 
control group. For example, when considering pit , the response of a treatment household is how 
much its energy usage during peak hours on a typical day changed between the pre-treatment and 
treatment periods, beyond the change observed in control group households. This is a difference-
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in-difference approach, explained in more detail in the next section. The goal of this work is to 
demonstrate and quantify meaningful relationships between household features, which are 
known a priori, and household responses to treatment as measured by changes in the metrics. 

Model 

Let yit  be any of the metrics described in the prior section (e.g., fit  or pit ). Let xi  be a 
numerical feature for household i  (e.g., mean of consumption from pre-treatment smart meter 
data), and let Xi =1 if xi  is greater than the median value for all households, and Xi = 0 
otherwise. Using the high/low indicator Xi  in the subsequent models greatly simplifies their 
interpretation. To determine whether a given feature can explain heterogeneity in how enrolled 
households responded to the pricing program, which was a randomized encouragement design, 
the following regression specification is employed. 

To account for any selection bias in the treatment group, i.e. to correct for the fact that 
enrolled customers are likely to be more enthusiastic responders to the treatment than randomly 
selected customers, the regression model is estimated using two-stage least squares (Imbens and 
Wooldridge 2009; Cappers et al. 2014). In the first stage, the treatment indicator Tit  is estimated 
by Ait , where Ait  is an indicator variable for whether household i  was encouraged to be in 

treatment on day t , producing T̂it . Similarly, the interaction term between the treatment and the 

feature indicator, XiTit , is estimated by XiAit , producing XiTit . In the second stage, using T̂it  and 

XiTit , the heterogeneity of the treatment effect on the treated is estimated as φ  in the following 
specification: 

 

yit = α +δ (XiPt)+ζ T̂it+φ (XiTit)+γ i +τ t +εit  
 
yit is the impact metric of interest (e.g., peak hour electricity usage)  

Xi  is an indicator variable for whether household i  has a high value of feature xi  
Pt  is an indicator variable for whether day t  is before or during the treatment period 

T̂it  is an indicator variable for whether household i  is in treatment on day t , 
     estimated in the first stage 

XiTit  is the interaction term between Xi  and Tit , estimated in the first stage 

γ i  is a fixed effect for household i  

τ t  is a fixed effect for day t  
εit  is an error term assumed to be i.i.d. normal, conditional on the covariates, clustered at 
the household level. 
 
This regression produces an unbiased estimate of ζ , the treatment effect on yit  for 

treatment households with low values of xi ; and of φ , the additive treatment effect of having a 
high value of xi  on the change in yit  for treatment households. Thus, the total treatment effect 
for households with high values of xi  (i.e., Xi =1) is ζ +φ , where φ  indicates how much greater 
the effect was for households with high values of xi . The model also produces an unbiased 
estimate of δ , which is the effect of Xi  on the change in the metric yit  for control households 
between the pre-treatment and treatment periods. A statistically significant value of our 
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coefficient of interest, φ , is an indication that xi  can explain heterogeneity in treatment 
household responses to the program in terms of the given metric yit . 

Results and Discussion 

With this model, hypotheses about relationships between household features and program 
responses can be tested. While the questions of greatest interest will vary between programs and 
program planners, the next three subsections explain particular hypotheses and report the results 
of testing them in the data. 

Hypothesis 1 

The first hypothesis tested is that households with a higher mean consumption during the 
pre-treatment summer ( xi ) would exhibit a greater response in terms of reduction of electrical 
energy consumption during peak hours ( pit ). The basic idea is that households that consume 
more have a greater capacity to reduce peak hour consumption in response to the pricing 
program. Note that this is not an obvious relationship. It could be the case, for example, that 
households that consume more are also wealthier, with electricity comprising a smaller part of 
their budget, so they may be unlikely to respond much to a pricing program. 

The hypothesis that greater pre-treatment mean consumption corresponds to greater 
reductions in energy during peak hours was found to be valid for all treatment groups. That is, φ  
is negative and statistically significant, indicating that treatment households with higher mean 
consumption reduced pit  more, as shown in Table 2. Thus, the intuition that larger households 
should respond more is confirmed in the data. Furthermore, the magnitude of the relationship is 
quantified. 

Table 2. Estimates of the effect of greater household consumption on heterogeneity in absolute 
responses to treatment. 

Metric 
 
 
 
 

Group 

pit

xi  = mean consumption 
during summer 

ζ  
kWh 

Sig.1 φ
kWh 

Sig.1 

Opt-in 
TOU 

-.54 *** -.77 *** 

Opt-out 
TOU 

-.18 *** -.33 *** 

Opt-in 
CPP 

-1.2 *** -1.5 *** 

Opt-out 
CPP 

-.57 *** -.99 *** 

1. Sig. is a symbolic representation of the statistical significance of β . Let s  denote the probability under the null 

hypothesis that β  attains a magnitude at least as large as that estimated by the model. Then * indicates s < 0.05 ;  

** indicates s < 0.01; *** indicates s < 0.001; a dash in both the β  and Sig. columns indicates that s ≥ 0.05 . 

12-7©2016 ACEEE Summer Study on Energy Efficiency in Buildings



For all treatment groups, φ > ζ , meaning that the additional treatment effect on 
households with high pre-treatment mean consumption was greater than the entire treatment 
effect on households with low pre-treatment mean consumption. In other words, households with 
higher mean consumption exhibited, on average, twice the reduction in consumption during peak 
hours as did households with low mean consumption. For example, on summer business days, in 
the Opt-in TOU group, treatment households with low values of xi  reduced their consumption 
during peak hours by 0.54 kWh on average, whereas treatment households with high values of 
xi  reduced by 1.31 kWh on average. Thus, if a program planner considering TOU and CPP plans 
were primarily concerned with reducing energy consumption during peak hours, they would do 
well to target households with higher mean consumption. 

Hypothesis 2 

The second hypothesis is that households with higher peak consumption during the pre-
treatment summer ( xi ) would exhibit a greater response in terms of reduction of maximum 
hourly consumption during peak hours ( mit ). Specifically, xi  is the 97th percentile of the daily 
maximum consumption in the pre-treatment smart meter data for household i. The basis for this 
hypothesis is similar in nature to that for Hypothesis 1 – households with greater peaks during 
the pre-treatment period have a greater capacity to reduce their peaks in response to the pricing 
program. The hypothesis was found to be valid for all treatment groups – φ  is negative and 
statistically significant, as shown in Table 3. 

Table 3. Estimates of the effect of greater household consumption on heterogeneity in absolute 
responses to treatment. 

Metric 
 
 
 
 

Group 

mit  

xi  = 97th percentile of daily 
maximum hourly consumption

ζ  
kWh 

Sig.1 φ
kWh 

Sig.1 

Opt-in 
TOU 

-.23 *** -.28 *** 

Opt-out 
TOU 

-.08 *** -.12 *** 

Opt-in 
CPP 

-.46 *** -.59 *** 

Opt-out 
CPP 

-.23 *** -.35 *** 

1. This table uses the same symbolic convention for statistical significance as Table 2. 

Once again, for all treatment groups, φ > ζ , meaning that treatment households with 
larger peaks in their pre-treatment data exhibited, on average, twice the reduction in daily peaks 
as did treatment households with smaller peaks in their pre-treatment data. Managing peak load 
is of critical importance for system operators and utilities. Thus, it is noteworthy that among the 
Opt-in CPP group, on critical event days, treatment households with high values of xi  reduced 
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their maximum hourly consumption during peak hours by over 1 kWh, on average, whereas 
those with low values of xi  reduced by less than 0.5 kWh. A program planner tasked with 
enrolling households in a pricing program to curtail maximum hourly load during peak hours 
could use this data to justify targeting households with higher daily peaks. 

Hypothesis 3 

The last hypothesis considered is that households that consumed a higher fraction of their 
electrical energy during peak hours in the pre-treatment period ( xi ) would shift a greater portion 
of their consumption away from peak hours in response to the pricing program (i.e. would have a 
greater reduction in fit ). Note that xi  and fit  measure relative quantities, so differences in the 
scale of consumption between different households are leveled out. 

This hypothesis was confirmed in the data: φ  is negative, indicating a stronger treatment 
effect for those who consumed a greater fraction of their energy during peak hours in the pre-
treatment period. However, the effect sizes and statistical significance are weak for some groups. 
The additional treatment effect here was not as large as it was for Hypotheses 1 and 2, and it was 
only strongly statistically significant for households on TOU rates. This means that a program 
planner primarily concerned with reducing fit  should expect relatively small improvements from 
targeting households with higher fractions of electrical energy consumed during peak hours in 
pre-treatment smart meter data. There may be other more effective targeting criteria for obtaining 
reductions in this particular metric. 

Table 4. Estimates of the effect of greater household fraction of consumption during peak hours 
on heterogeneity in relative response to treatment. 

Metric 
 
 

 
Group 

fit  

xi  = fraction of consumption 
during peak hours 

ζ  Sig.1 φ Sig.1 

Opt-in 
TOU 

-.021 *** -.012 *** 

Opt-out 
TOU 

-.005 *** -.006 *** 

Opt-in 
CPP 

-.035 *** -.014 ** 

Opt-out 
CPP 

-.017 *** -.009 * 

1. This table uses the same symbolic convention for statistical significance as Table 2. 

Conclusion 

The main finding of this work is that household features derived using statistical 
techniques on pre-treatment smart meter data can explain a considerable amount of heterogeneity 
in treatment outcomes between different types of households. For example, we found that when 
considering electricity consumption during peak hours as the program metric, the effect of 
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treatment on households with high pre-treatment mean and maximum consumption was over 
double that of households with low mean and maximum consumption. The intent of this work is 
to provide proof of the existence of such relationships and to demonstrate a principled method 
for using pre-treatment smart meter data to analyze program outcomes and identify households 
that responded most strongly. These results open the door to further exploration for other 
significant relationships between household features and heterogeneity in outcomes among 
treated households. This kind of modeling and analysis is of practical use for program planners 
seeking to improve overall program efficacy through better targeting, which reduces customer 
acquisition costs and increases program benefit per customer enrolled, and through more 
consistent and refined program evaluation. 

A key extension of this work is to develop hypotheses about how consumers responded to 
the treatments and then to test those hypotheses in the data. This would allow for an 
interpretable, data-driven segmentation of the treatment households that could provide insight 
into which households responded best and how they did so. The second extension is the 
development of predictive models that use pre-treatment smart meter data to better predict which 
households will respond the best to a particular treatment.   
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