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ABSTRACT 

Demand response (DR) programs have been growing in number and magnitude in the past 
decade to reduce load during the peak hours. Despite efforts to automate DR, we lack methods and 
tools to support facility/building managers with ‘how to respond’ decisions at building-scale. This is 
because there are multiple control strategies available at commercial buildings as response to a DR 
signal and quantifying the trade-off of these mechanisms for power management has remained a 
challenge. Hence, it is important to rigorously evaluate power performance of different heating, 
ventilating, and air conditioning (HVAC) control strategies under different scenarios. This cannot 
be achieved without quantifying performance. The authors have developed a set of quantifiable 
performance indicators (PIs) in their previous work by applying an engineering perspective on 
performance-based building design and operation. These PIs include the ratio of maximum to 
average power consumption, deviation of demand from nominal power use, energy consumption, 
and two measures of thermal comfort. This paper examines these PIs by systematically quantifying 
them under different scenarios of use to show how they can be used for power and energy 
assessment and management with application to DR. Scenarios defined were modeled and 
simulated in a controlled environment as a set of experiments. The platform used to model and 
simulate these experiments is EnergyPlus. Each PI was calculated in the post-processing stage to 
assess and compare performance of different control strategies. Quantification and assessment of 
power performance of HVAC control strategies enable development of decision support tools to 
facilitate building managers’ decisions in the context of DR.  

Introduction 

Historically, the goal of the electric power grid has been to balance the supply and demand 
and deliver electricity to consumers in a cost-effective and reliable way.  The energy crisis of the 
1970’s raised the need for energy efficiency; hence, sustainability became a new objective for the 
electricity system. Today, the increasing diversity and variability of loads and the growing 
penetration of intermittent renewable generation sources have introduced more volatility to the 
power system requiring new components and methods to sustain its stability and reliability. This 
includes deployment of new mechanisms and techniques at building level commonly known as 
ancillary services and demand side management (DSM) techniques. DSM techniques include 
energy efficiency and conservation, peak load management, and DR.  

Furthermore, “while energy efficiency measures have been widely understood by many 
audiences including facility managers, building owners, utility program managers, auditors, and 
policy makers, there are not many documents introducing frameworks or guidelines for measures 
and strategies to participate in demand response programs. Commercial buildings have been only  

12-1©2016 ACEEE Summer Study on Energy Efficiency in Buildings



minor participants in demand response programs” (Motegi et al. 2007). This statement is still valid 
today despite all efforts and work done in the areas of DSM and building integration in the power 
system since 2007.  

This paper aims to address this issue by quantifying a set of measurable performance 
indicators (PIs) previously defined to evaluate power performance of buildings and their control 
strategies in the power system. This is an essential part of understanding, assessing, and comparing 
systems, mechanisms, and strategies systematically and effectively. These measureable PIs are 
necessary to develop methods, frameworks and decision support tools that can be used to enhance 
integration of buildings in the power system. Quantifying performance using measurable PIs enable 
development of a multi-scale decision making framework to calculate the trade-off between 
different choices in presence of multiple objectives. In the case of building-grid interactions, these 
objectives are maximizing service provided to the grid (e.g., reducing peak) and minimizing energy 
consumption of buildings while considering thermal comfort of occupants.  

Background 

DR is defined as intentional modifications in electricity usage of end-use customers from 
their normal consumption patterns (in terms of both timing and magnitude) in response to “changes 
in the price of electricity over time, or to incentive payments designed to induce lower electricity 
use at times of high wholesale market prices or when system reliability is jeopardized” (DOE, 
2006). DR has been considered as a promising technique. This is because there are about 5.6 million 
commercial buildings in the U.S., comprising 87.4 billion square feet of floor space, consuming 36 
% of electricity generated, and contributing to 1/3 of peak demand (DOE 2006; EERE 2011; EIA 
2012). The large amount of power consumed by buildings, variations in consumption and load type, 
and enormous thermal storage capability of commercial buildings make them a great resource for 
DR (Oldewurtel et al. 2011; Hughes et al. 2015; and Wang et al. 2014).  

Despite this potential, commercial buildings do not participate in DR programs or do not 
respond even if they receive DR signals from their utility. This is because of the complexity of 
systems and their control in commercial buildings and lack of DR automation at building level. 
Even in AutoDR, we lack methods and measures that support implementation of advanced control 
strategies in building automation systems unless the facility manager is knowledgeable and willing 
to define different control mechanisms to respond to DR (OpenADR, 2015; DRRC, 2015; Koch & 
Piette, 2009). Even in this case, the facility manager does not have a systematic framework to 
quantify and assess power performance of buildings under different control strategies to select the 
optimum strategy in terms of energy, power, and comfort. As the old management adage says: “you 
can’t manage what you can’t measure,” measurement methods illustrate relationships between 
parameters and interaction among systems. Effective energy and power management relies on 
measuring performance using quantifiable PIs. 

Makhmalbaf (2016) defined a set of quantifiable PIs using an engineering perspective on 
performance based building design and operation. This approach is based on a top-down functional 
decomposition and bottom-up technical system aggregation approach to capture quantifiable PIs. 
This step-by-step method helps to define an application or case specific performance tree for 
categorization of functionality and their mapping into sets of performance criteria. Through 
structuring this performance framework and identifying certain “power” performance criteria e.g., 
power resiliency, it is possible to systematically formulate measures (i.e., PIs). Each PI can robustly 
measure how well a system fulfills building function while satisfying performance criteria 
identified. These PIs include: maximum to average power ration (MAPR), load disparity, energy 
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use intensity per day, and the degree and magnitude of indoor air temperature deviating from 
thermostat setpoint. These PIs will be explained and quantified in the next section. 

There are different controllable loads in commercial buildings that can be used in DR, such 
as HVAC system, lighting, and plug loads. HVAC system is identified as a flexible load for DR 
(Motegi et al., 2007; Wang et al., 2014; and Watson et al., 2006). The focus of this study is also on 
HVAC control strategies and its performance as a result of a DR event. In this section, a broader 
number of control strategies applicable at different system and components levels are discussed. 
However, in the following sections, certain control strategies are selected for further evaluation and 
discussion. There are different controllable inputs (i.e., parameters) in an HVAC system and a 
number of control points with sensors to collect and report data and status. The common control 
inputs are: temperature, pressure, humidity, air flow, and CO2. Voltage and current may also be 
monitored at certain locations. Sensors used to collect time series data including status of these 
inputs are installed at certain control points or embedded inside each component. There are common 
HVAC control algorithms used for normal operation of the system and there are a number of them 
that are specifically deployed in commercial building HVAC systems for DSM/DR to reduce or 
shift load. These can be summarized as: global temperature setpoint adjustment, supply air 
temperature increase, supply fan speed reduction, duct static pressure reduction, rooftop unit 
shutdown, chilled water temperature increase, chiller demand reduction, boiler lockout, pre-cooling 
of building thermal mass, and light dimming (Motegi, et al., 2007 and Kim et al., 2013). These 
control strategies are classified and listed in Table 1.  

 
Table 1 Summary of Control Strategies Used in DR. Classified by Location of Control Point. 

Control Space Control Point Control Strategy 

Thermal zone 
(Demand) 

 

 
Setpoint adjustment 

Pre-cooling 
 

Air Handling 
Unit (AHU) 
(Distribution) 

   

Reducing duct static pressure 

Limiting fan Variable Frequency Drive (VFD) 
(change speed or flow rate) 

Demand control ventilation (DCV) 

Increasing supply air temperature 

Reducing fan quantity 

Limiting cooling valve 
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Plant (Supply) 

 

    

Increasing chilled water temperature

Limiting chiller demand 

Reducing chiller quantity (staging) 
 

Approach 

To assess power performance of building energy systems in presence of DR, a set of 
experiments are defined. Experiments are populated by implementing different control strategies in 
a small office building during different DR scenarios. Hence, each experiment has a control 
strategy, a state of variation, time of DR, and duration of DR. The advantage of modeling these 
experiments is that we can study, assess, and compare performance of systems under controlled 
conditions. Therefore, the building, system type, and weather conditions remain constant in this 
study (i.e., one building type, one system type, and one day) in order to evaluate performance of 
different control strategies under different scenarios but in a controlled environment. By keeping the 
building, system, and weather conditions the same, we can ensure consistent and robust 
performance assessment. This shall yield to identification and selection of the most effective 
mechanism for a given scenario. Furthermore, comparison of different control strategies for the 
same building under different scenarios indicate applicability and potential use of PIs selected in 
automated building energy management systems.     

Building Description 

The building used in this case study is a 2,120 square meter single story building constructed 
in 2015 providing both office and laboratory spaces. This building is located at the north end of 
Pacific Northwest National Laboratory's campus in Richland, WA. In addition to office spaces, 
there are three control rooms (including the campus control center), laboratories focused on power 
electronics and interoperability, outdoor testing pads, EV charging stations, data storage and 
computing capability. The center used to monitor energy use and system performance of buildings 
across campus is also located in this building. This building was modeled in EnergyPlus using 
design, construction, and material specifications of the building extracted from architectural and 
mechanical drawings. The lighting intensity in the building was modeled to be 3.28 W/m2, the 
number of people (m2/person) varies between 4.6 to 18.5 m2/person from zone to zone with an 
average of 14.8 m2/person. Plug and process loads have a minimum of 1 W/m2 and maximum of 53 
W/m2 with an average of 13.6 W/m2. 

Thermal zoning 

Five air handling units (AHUs) using district steam for heating and cold water for cooling 
serve this LEED Gold-certified facility. EnergyPlus is the modeling and simulation engine used in 
this study. The layout of the building, thermal zones, and building model in EnergyPlus are shown 
in Figure 1. This study focuses on AHU1 for the purpose of analysis and discussion included. 
AHU1 serves the largest thermal zone in this building. The typical meteorological year (TMY3) 
data set is used to simulate the buildings.  
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Figure 1. Thermal Zones (left) and Building as Modeled in EnergyPlusTM (right). 

HVAC 

The AHU utilizes the campus central chiller to provide the chilled water needed for cooling 
within the building. The VAV air flow set point is reset to maintain the zone temperature at set 
point. The zone temperature setpoint is within 23 °C ± 1 °C range during occupied hours and 18°C 
to 27 °C during unoccupied hours. When zones are not occupied, the zone temperature setpoint is 
23 °C ± 3°C as the standby mode. The terminal box collects all the occupancy information from 
each zone to adjust the system operating specifications. The air flow has minimum and maximum 
setpoints. The minimum airflow setpoints are determined by the ASHRAE standard 62.1 for 
ventilation requirements based on occupancy. The zone damper is modulated to maintain the 
measured airflow at the set point. The controllable points are minimum airflow setpoint, maximum 
airflow setpoint, zone temperature setpoint, heating offset, cooling offset, standby offset, un-
occupied heating setpoint, unoccupied cooling setpoint, heating valve output, and damper output. 

Schedules in the base models are determined mostly based on regular office building 
schedules as specified in DOE prototype commercial buildings for fan, occupancy, lighting, plug 
load, and temperature setpoints during weekdays and weekends.  

Control Strategies and Scenarios Implemented 

As was mentioned earlier, each experiment includes a HVAC control strategy and a DR 
specification (time and duration). The building used in this study utilizes district heating and 
cooling; therefore, there is no control option that can be specified at building or plant level. Control 
strategies described and implemented in this building are either specified at zone level (e.g., 
increasing or decreasing the zone temperature) or at AHU level (e.g., air flow setpoint change). The 
control strategies considered and implemented in this case study are: 1) setpoint increase, 2) 
setpoint reduction, i.e., pre-cooling, 3) fan shut-down, 4) reducing fan flow rate, 5) demand control 
ventilation (DCV), and 6) combined strategy.  

Each control strategy has a definition (e.g., changing setpoint) and a degree of variation 
(e.g., -4°C to +4°C). These control specifications combined with DR specifications (hour and 
duration) result in a scenario. More than 100 scenarios were defined and most of them were 
modeled in EnergyPlus. However, a subset of these scenarios was selected for the purpose of 
performance assessment study included here to better present the results. It is possible to model DR 
specifications in EnergyPlus by modifying the schedules for each scenario defined. Scenarios 
implemented were simulated at 5-minute time intervals for a few days in July. July was chosen 
because of the higher electric cooling load and annual peak usually observed in this month. Results 
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were extracted from EnergyPlusTM output files for one day (July 6th) for post processing to analyze 
data using performance metrics that will be discussed in the next section.  

Assessment of DR Control Strategies  

PIs selected include: maximum to average power ratio (MAPR), load disparity, power 
performance coefficient (PPC), energy use intensity per day, and two measures of thermal comfort. 
Each of these is explained, quantified and discussed in this section.  

Max-to-average power ratio (MAPR) 

Max-to-average power ratio (MAPR) is the ratio of maximum power demand to the average 
demand as shown in Equation 1. This PI measures load performance in terms of power ‘peak’ 
and/or ‘rebound1.’ MAPR indicates: 1) peak and hence flexibility for load reduction if assessing 
load profile (the higher the MAPR, the more flexible the load is for DR) and 2) rebound if assessing 
performance of control strategies (the higher the MAPR, the higher the rebound). Although MAPR 
can be used to assess the extent (i.e., height) of peak or rebound, it is not a good indicator for the 
duration of peak. 

                                  1 

 This PI is calculated for each experiment. For instance, Figure 2 presents calculation of 
MAPR for one variation of one control strategy, which is increasing setpoint by 3°C for different 
durations of DR (10, 30, 60, 90, and 120 minutes) in the morning and in the afternoon. Similarly the 
PI is quantified for all other experiments, e.g., increasing setpoint by 2 and 4°C, precooling, 
reducing air flow, powering off the fan, and DCV. Only a sample of detailed calculations are shown 
in this section. Results are then summarized and included the Results section. 
 

 
Figure 2 Performance of the system in terms of MAPR for different durations [minutes] of DR when increasing setpoint 
by 3°C. 

Load Disparity Coefficient  

Demand disparity is a coefficient of variation for a period of time e.g., daily, monthly, or 
annually as shown in Equation 2. The higher the demand disparity, the more power demand is 

                                                 
1 A power rebound is an unwanted increase in demand immediately following any energy efficiency intervention or load 
reduction mechanism. 
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deviating from the average power consumption in a given time period. The closer it is to zero, the 
less disperse load is from average load in a given time (a day in this case). Demand disparity also 
indicates the length of a peak or rebound. Flexibility of load in terms of both demand reduction and 
excess absorption can also be realized from demand disparity. To minimize the length of rebound, 
demand disparity should be lower than 0.5 after a DR event i.e., after applying any HVAC control 
strategy intervention to minimize load. The lower the demand disparity (between 0 to 0.2), the 
closer it is to average power use and hence not flexible. 

                                                                        2 

 
Figure 3 presents calculation of demand disparity coefficient for one variation of one control 

strategy, which is increasing setpoint by 3°C for different durations of DR (10, 30, 60, 90, and 120 
minutes) in the morning and in the afternoon. Similarly the PI is quantified for all other 
experiments, e.g., increasing setpoint by 2 and 4°C, precooling, reducing air flow, powering off the 
fan, and DCV. 

 
Figure 3 Performance of the system in terms of demand disparity for different durations [minutes] of DR when 
increasing the setpoint by 3°C. 

Power Performance Coefficient (PPC) 

PPC is the ratio of average power in a given time period (one day in this case study) to 
power consumption at the current timestep (or any instance of time the performance is being 
assessed). Therefore, this is a time series calculation that should be carried out at every time interval 
to make informed decision about HVAC operation at that time. For instance, in this case study, PPC 
is calculated every five minutes. If analyzing a load profile, having PPC below one means load is 
peaking and hence flexible to participate in DR, peak management, or load reduction to conserve 
energy. If analyzing power performance of a system and the control strategies applied to select the 
most applicable control mechanism, having a PPC equal or close to one means the strategy is ideal 
but as it gets closer to zero (PPC<1), it means current power consumption is getting larger than 
average, which indicates rebound shaping. As PPC gets larger and larger (PPC>1), it means current 
power use is smaller than average consumption. This is not a concern if the goal is to conserve 
energy, however, any deviation from average power consumption means stress to the power system.  
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Figure 4 presents calculation of PPC for one variation of one control strategy, which is 
increasing setpoint by 3°C for different durations of DR (10, 30, 60, 90, and 120 minutes) in the 
morning and in the afternoon. Similarly the PI is quantified for all other experiments, e.g., 
increasing setpoint by 2 and 4°C, precooling, reducing air flow, powering off the fan, and DCV. 

 
Figure 4 Performance of the system in terms of PPC for different durations [minutes] of DR when increasing the 
setpoint by 3°C. 

Energy Use Intensity 

One of the most emphasized concerns about DR at building scale is the trade-off between 
peak reduction and energy efficiency. Hence, it is important to take into account the energy use 
intensity of systems when different control strategies interventions are applied as a response to a DR 
signal. The energy consumption of the base case (without any control strategy applied during DR) is 
about 16 kWh/day. Results indicate that the AHU consumes about (very close to) the same amount 
of energy in most scenarios implemented except for pre-cooling strategies, which consume more 
energy especially if implemented for more than 10-30 minutes in the morning. Increasing the 
thermostat setpoint by 2°C for 120 minutes results in the lowest energy consumption. Figure 5 
presents calculation of energy use intensity for one variation of one control strategy, which is 
increasing setpoint by 3°C for different durations of DR (10, 30, 60, 90, and 120 minutes) in the 
morning and in the afternoon. Similarly this PI is quantified for all other experiments, e.g., 
increasing setpoint by 2 and 4°C, precooling, reducing air flow, powering off the fan, and DCV. 

 

 
Figure 5 Performance of the system in terms of energy use intensity for different durations [minutes] of DR when 
increasing the setpoint by 3°C. 
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Thermal Comfort 

 Thermal comfort is assessed in terms of two indicators. One is the duration of zone 
temperature deviating from setpoint temperature and the second is the magnitude or intensity of 
space temperature varying from setpoint. Based on results obtained, shutting off AHU fan or 
applying DCV cause the maximum variation from setpoint temperature followed by reducing air 
flow and pre-cooling.  Figure 6 presents calculation of duration of thermal discomfort (left) and its 
intensity (right) for one variation of one control strategy, which is increasing setpoint by 3°C for 
different durations of DR (10, 30, 60, 90, and 120 minutes) in the morning and in the afternoon. 
Similarly this PI is quantified for all other experiments, e.g., increasing setpoint by 2 and 4°C, 
precooling, reducing air flow, powering off the fan, and DCV. 

 

  

Figure 6 Performance of the system in terms of duration of thermal discomfort (left) and its intensity (right) for 
different durations [minutes] of DR when increasing the setpoint by 3°C. 

Results  

PIs quantified are compared and a summary of how they compare is illustrated in Figure 7. 
Each radar chart shows how PIs compare for each control strategy for different experiments. In 
these charts S1 to S6 represent control strategies one to six2. D1 to D5 represent different durations 
of DR (10, 20, 60, 90, and 120 minutes) and PIs one to six represent the six PIs used for 
performance quantification3. Based on this performance quantification, we can assess performance 
and strategies. This assessment indicates that: 1) pre-cooling in the morning hours results in a large 
peak in power consumption without noticeable energy and power reduction in the afternoon hours 
which are high electricity demand hours, 2) increasing setpoint by 2°C, 3°C, or 4°C have the same 
performance in terms of PIs selected, 3) reducing amount of outdoor air during afternoon hours 
results in a large rebound after DR period, and 4) increasing setpoint has better performance in 
terms of all PIs on average when compared to other strategies.  

                                                 
2  S1:  Increasing setpoint (results for increasing setpoint by 2, 3, or 4 ºC fall on top of each other) 
   S2:  Decreasing setpoint or pre-cooling (results for decreasing setpoint by 2, 3, or 4 ºC fall on top of each other) 
   S3:  Reducing air flow to 3 kg/s, S4:  Reducing air flow to 1 kg/s, S5:  Fan powered off, S6:  DCV 
3  PI1: MAPR, PI2: Disparity, PI3: PPC,  PI4: Energy use intensity,  PI5: Thermal comfort (duration of uncomfortable  
    minutes), PI6: Thermal comfort (intensity of uncomfortable temperature) 
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Figure 7 Comparing performance of different control strategies in terms of different PIs selected. 
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Conclusion 

It is well realized that energy efficiency is only concerned with reducing consumption 
regardless of time of the day, excess generation caused by intermittent generators such as wind, and 
stability of the power system. While energy efficiency in buildings should not be compromised in 
order to provide service to the power grid, the large scale and global energy utilization should be 
taken into account in design and operation decisions of buildings. Today the importance of DSM 
and DR has increased to support operation of the power grid using buildings as a resource. Hence, it 
is important to better measure and understand energy and power performance of buildings in the 
modern power system. This is an essential part in understanding, assessing, and comparing systems, 
mechanisms, and strategies in a systematic and scientific way to support both building and power 
planning and management. Performance cannot be effectively evaluated without quantifying 
performance using measurable performance indicators (PIs).  

This paper uses a set of quantifiable PIs to assess power and energy performance of 
buildings and their control strategies in the power system. To achieve this, more than 100 
experiments were defined and modeled in EnergyPlus using a small office building located in 
Richland, WA. Each experiment includes a simple or advanced HVAC control strategy, different 
variations (e.g., increasing setpoint by 2, 3, or 4°C), and a DR specification (time and duration). 
Simulated results were analyzed to quantify performance using a set of PIs. PIs selected include: 
maximum to average power ratio (MAPR), load disparity, power performance coefficient (PPC), 
energy use intensity per day, and two measures of thermal comfort. Each PI was quantified and 
performance of different strategies was compared using these PIs. The results presented show that 
increasing setpoint has better performance in terms of most PIs when compared with other 
strategies (in this case). However, this study did not consider the weight of PIs, which is an 
important factor in real life decisions. This will be addressed in our future work.  
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