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ABSTRACT 

Analytics software is increasingly used to improve and maintain operational efficiency in 
commercial buildings. Energy managers, owners, and operators are using a diversity of 
commercial offerings often referred to as Energy Information Systems, Fault Detection and 
Diagnostic (FDD) systems, or more broadly Energy Management and Information Systems, to 
cost-effectively enable savings on the order of ten to twenty percent. Most of these systems use 
data from meters and sensors, with rule-based and/or data-driven models to characterize system 
and building behavior. In contrast, physics-based modeling uses first-principles and engineering 
models (e.g., efficiency curves) to characterize system and building behavior. Historically, these 
physics-based approaches have been used in the design phase of the building life cycle or in 
retrofit analyses. Researchers have begun exploring the benefits of integrating physics-based 
models with operational data analytics tools, bridging the gap between design and operations. In 
this paper, we detail the development and operator use of a software tool that uses hybrid data-
driven and physics-based approaches to cooling plant FDD and optimization. Specifically, we 
describe the system architecture, models, and FDD and optimization algorithms; advantages and 
disadvantages with respect to purely data-driven approaches; and practical implications for 
scaling and replicating these techniques. We conclude with an evaluation of the future potential 
for such tools and future research opportunities. 

 

Introduction  

This paper presents the development of a hybrid data-driven and physics model-based 
operational tool for energy efficiency in central cooling plants. The tool, PlantInsight, offers fault 
detection and diagnostics (FDD) functionality, setpoint optimization, and visualization of key 
performance parameters. Operational tools that combine analysis of historical data with a 
representation of the physics of the building and its systems may offer increased diagnostic 
power. Whereas empirical data-driven analytics permit assessment of operations based on actual 
prior system performance, physics-based approaches also enable assessment relative to design 
intent, and underlying physical principles. While the potential advantages of these hybrid tools 
are clear, it is less clear whether they can practically be developed and deployed for routine use 
in today’s buildings. In this work, we detail the development of PlantInsight, including its 
architecture, model creation and calibration, and analysis algorithms. We describe development 
challenges that were encountered, as well as operator reception of the tool, and savings 
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opportunities identified. Based on this experience we provide discussion of practical implications 
for scaling and replicating these techniques, and conclude with an evaluation of the future 
potential for such tools and future research opportunities. 

Current State of the Art  

Data-driven and rule-based analytics tools, as defined in Katipamula 2005, are 
increasingly used for operational efficiency in today’s commercial buildings. Energy 
Management and Information Systems (EMIS) span a family of technologies and including 
energy information systems (EIS), building automation systems, fault detection and diagnostics, 
and monthly energy analysis tools. These tools have enabled whole-building energy savings of 
up to 10-20% with rapid paybacks, often under three years (Granderson 2011, 2016). Savings are 
achieved through multiple strategies such as identification of operational efficiency improvement 
opportunities, fault and energy anomaly detection, and inducement of behavioral change among 
occupants and operations personnel. The market for commercial analytics tools has expanded 
quickly over recent years, marking one of the largest market growth areas in commercial 
building technologies.   

In contrast to data-driven approaches, physics-based modeling tools use first-principles 
and engineering models (e.g., efficiency curves) to characterize system and building behavior. 
Historically, these physics-based approaches have been used in the design phase of the building 
life cycle or in retrofit analyses; EnergyPlus, eQuest, Sefaira, and Integrated Environmental 
Solutions (IES) VE, are just a few tools that are founded on these physics-based methods. There 
are also instances of simulation models used for HVAC design, such as Trane Trace. In the 
commercial market, there are a modest yet growing number of tools that have begun to 
incorporate physics-based models into applications that target the identification of operational 
efficiency opportunities, such as simuwatt® Energy Auditor and Retroficiency Building 
Efficiency Intelligence. Those that do are often used to identify capital and operational measures, 
but are most commonly applied at single points in time for activities such as audits, 
commissioning, and portfolio opportunity assessment, as opposed to being integrated into 
continuous tools for operations staff. These examples notwithstanding, the use of hybrid data-
driven and model-based approaches for operational tools that conduct continuous fault detection 
and energy use optimization is largely still the domain of exploratory research. For example, a 
previous attempt to use EnergyPlus physics-based models to identify whole-building level 
operational energy waste was proposed by (Pang 2012).  

Overview of PlantInsight: A Physics-based Operational Analytics Tool  

PlantInsight is a hybrid data-driven and physics model-based operational tool for energy 
efficiency in central cooling plants. It provides detection and diagnosis of three types of faults – 
fan cycling, chiller cycling, and poor chiller efficiency. It also provides analysis of optimal 
condenser water setpoint temperatures to minimize plant energy consumption. A calibrated 
Modelica model is used in the algorithms to identify poor chiller efficiency, and optimal 
condenser water temperature, while the cycling faults are identified using purely data-driven 
models. In addition, the tool offers visualization for operators to track key parameters such as 
cooling plant load and chilled water loop temperature. Through provision of these features, 
PlantInsight targets ten percent plant energy savings, given engaged users who use the tool daily, 
and are able to take action on the tool’s outputs.  
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Development Methodology 

The development of the PlantInsight tool comprised four primary elements: model 
construction and calibration, creation of FDD and optimization algorithms, architecture 
definition, and operator feedback. These elements are detailed in the following subsections. 

Model Construction and Calibration  

The Modelica models that simulate the operation of the central cooling plant were 
developed using a diversity of information from the cooling plant design specifications, 
nameplate data, drawings, and trend-log data. Beginning with the design drawings, the plant 
configuration, components, and equipment were replicated in model form. The Modelica 
Buildings Library (Wetter 2014) was used to build a representation of a specific central cooling 
system a large university campus. In this case, the system included 2 interconnected chilled 
water plants. The first plant contains one 2500-ton York MaxETM YD Centrifugal Liquid Chiller 
and two 1250-ton York MaxETM YK Centrifugal Liquid Chillers, with four cooling towers and 
five primary pumps. The second plant contains three 2500-ton York MaxETM YD Centrifugal 
Liquid Chillers (with space available for an additional 2500 ton chiller), three cooling towers, 
and four pumps. Typical off-peak operations use the first plant exclusively, while peak summer 
operations use the second plant either exclusively, or in combination with the first.  Once the 
plant design was represented, manufacturer data including nameplate values, chiller loading 
curves, and pump curves, were used to quantify key equipment and component-level 
characteristics. Finally, the specific control sequences that are in use at the plant were embedded 
into the model. In-person site visits were necessary to compile all of the information needed for 
model creation, since not all information was readily accessible in digital form.  

Once constructed, the models were calibrated to the measured historic data from the 
cooling plant. The first step in calibration was to filter the historic data to that representing 
steady state plant operation. From the steady state data, we ensured as large as possible a range 
in the variation of each variable, for maximum coverage of operational conditions. Next, the 
GenOpt (Wetter 2001) optimization engine was used to search the (un-calibrated) model 
parameters to minimize the difference between the model outputs and the associated measured 
data. The variables involved in the calibration are listed in Table 1. Model parameters are values 
used in the model that are known a priori, and are specific to the equipment and plant design. 
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Table 1 Variables used in the model calibration 

Plant Components Model Outputs Model Inputs Model Parameters 
Chiller model Coefficient of 

Performance (COP) 
Compressor status (on/off) 
Chilled water flow rate 
 
Condenser water flow rate 
 
Chilled water entering 
temperature 
 
Temperature of the 
condenser water entering 
the chiller 

Coefficients of the 
chiller operation curve 
 
Nominal evaporator 
temperature 
 
Nominal condenser 
temperature 

Cooling tower 
model 

Condenser water 
leaving temperature  
 
Fan energy use  

Fan speed ratio of each 
module 
 
Condenser water entering 
temperature  
 
Outside air dry bulb 
temperature  
 
Outside air relative 
humidity 

Nominal approach 
temperature 
 
Nominal wet bulb 
temperature 
 
Coefficient of the fan 
operation curve 

 
The ‘goodness’ of calibration for the chiller models was determined based on coefficient 

of performance (COP), and that of the tower models was based on the temperature of condenser 
water leaving the tower and fan power consumption. The objective functions are shown in the 
equations below. Calibration was deemed sufficient when more than 95% of the data points fell 
within a 10% error band. 
 = min( ( ( ) − ( )) ), 	 ∈ [ , + ∆ )∆

         

	 = min( ( _ ( ) − _ ( ))∆
+ ( _ ( ) − _ ( )) ), 	 ∈ [ , + ∆ ) 

 
In these equations, ( ) and ( )are the measured and simulated COP during the 
calibration period [ , + ∆ ), _ ( ); _ ( )  are the measured and simulated 
cooling tower fan power consumption during [ , + ∆ ); and _ ( ) and _ ( ) are 
the measured and simulated temperature of condenser water leaving the tower. 
 

12-4 ©2016 ACEEE Summer Study on Energy Efficiency in Buildings



FDD and Optimization Algorithms  

To-date PlantInsight addresses three faults. Poor chiller efficiency is determined by 
comparing the model-predicted versus the metered coefficient of performance. Described in 
detail in Bonvini 2014a, 2014b, and briefly summarized here, the FDD algorithm is based on an 
advanced Bayesian nonlinear state estimation technique called Unscented Kalman Filtering 
(Julier 1996) that quickly reconciles model predictions with measured data. A back smoothing 
method is added to reduce the likelihood of false positives from operational variability and data 
uncertainties. A clustering and decision tree analysis procedure was developed to group detected 
faults based on the similarity of conditions under which they occur; similar instances are 
grouped, and summarized in the tool interface to support root cause diagnostics by the operator. 
First, a k-means clustering algorithm divides the observed faults into distinct operational 
conditions under which the faults can be characterized. Each k cluster corresponds to a 
diagnostic message for the operator (see Figure 4). Once the clusters are identified, a human 
readable diagnostic message must be assigned. A decision tree is used to determine the 
boundaries in the feature space that distinguish between regular and faulty data, and thus identify 
them. The variables used in the decision tree, i.e. the feature space, are condenser and evaporator 
water temperatures, cooling load, electric power, time of the day, outside air temperature and the 
condenser and evaporator mass flow rates. The results of the decision tree are then sorted in 
order of importance to find the set that best describes the majority of the faulty conditions. This 
algorithm will be evaluated in field testing to assess the effectiveness of the clustering and 
decision tree analysis, as well as the thresholds used in the probabilistic identification of faults.     

Excessive chiller cycling and excessive cooling tower fan cycling are detected using data-
driven algorithms that rely upon chiller motor current data and fan speed data. The data is 
collected every 5 minutes and interpolated to 10 seconds, using cubic interpolation (linear and 
quadratic interpolation created spurious high frequencies, and large oscillations respectively). 
Interpolation was needed to increase the number of data points in order to use Fourier 
transformation. The time series data is transformed into the frequency domain using a Fourier 
transform on a rolling two-hour window. The area under the amplitude versus frequency curve of 
the Fourier transform is calculated using trapezoid integration, for the area between a frequency 
of 4 cycles per hour to a frequency of 6 cycles per hour. Due to the data sampling frequency of 
every 5 minutes, the shortest cycling frequency (the Nyquist frequency) that can be detected is 6 
cycles per hour. Higher frequency of data collection is desirable to avoid aliasing problems but 
was unfortunately not available. If the area under the curve is higher than a reference value, then 
an excessive cycling fault is identified.  

The optimization algorithm determines the most effective condenser water temperature 
setpoint .The chillers’ efficiency increases when the temperature of condenser water entering the 
chillers (Tcw,ent) decreases. On the other hand, reducing Tcw,ent  may increase the energy 
consumption of cooling towers. Therefore, there is an optimum condenser water temperature 
setpoint for cooling towers that the total energy consumption of the chillers and the cooling 
towers is minimized. To determine the optimal condenser water temperature setpoint, the 
component models of multiple chillers, cooling towers and pumps were packaged into a system 
model. The system model was run to predict the energy consumption under different condenser 
water set points. Optimization constraints, such as the desired cooling load, were also 
incorporated into the model. As with the calibration activity, GenOpt was used as the 
optimization engine. The optimization period can be set to any desired value, in the case of this 
work, ranging from one hour to one day. Specifically, the optimal condenser water set point is 
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determined by solving the optimization problem defined in the equation below, and documented 
in Huang, 2014. 
 min | = min , ( ), ( ) , ( ), ( )∆ , for	 ∈ [ , + ∆ ) 

such that                                                         , , , ( ) , , , 

 
In these equations, |  is the total energy consumption of the chillers and cooling towers 

during the optimization period [ , + ∆ ), ,  is the condenser water set point,  is the 

predicted cooling load,  is the predicted wet bulb temperature from a weather forecast,  is the 
state vector of the system (e.g. equipment operating status, water temperature in chiller condenser 
and evaporator), and , ,  and , ,   are the low and high limits of the condenser water set 
point during [ , + ∆ ).  
Architecture  

The architecture of the PlantInsight Tool is shown in Figure 1 as a block diagram 
schematic. The green blocks indicate portions of the system that are located at the site, while the 
orange blocks represent remote components. Data from the meters and sensors at each cooling 
plant is transferred to the on-premise automation system (EMCS), which is accessed through an 
operator kiosk. Data from the site is pushed to a remote set of databases (Cassandra storing the 
long term persistent data and Redis for faster access to the most recent data as well as a cache for 
results) that are used to store data for access by the PlantInsight tool. The models, FDD and 
optimization algorithms, and code to generate output and represent findings to the user are 
hosted in a platform on the cloud. The user access to the tool through a browser-based Javascript 
graphical front-end application that interacts with the back-end via a REST API. 

 

Figure 1. Architecture of the PlantInsight tool for hybrid model-based and data-driven central plant 
diagnostics and optimization 
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Operator Feedback and Tool Reception  

To ensure that the tool would be of maximum utility to plant operators, design feedback 
was obtained iteratively, throughout development. The most important feedback that was (and is 
being) integrated into the tool design and functionality is summarized in the following:  

 
• Add key performance indicators: Primary chilled water loop temperature, and weather 

forecast are critical parameters that are tracked by the operations staff. In addition, staff 
also requested that the tool-predicted plant load forecast be added to the interface. Since 
these variable are tracked on a continual basis under existing operations, it was important 
that they be included in the PlantInsight tool. If excluded the tool would be less likely to 
be integrated into daily management processes because it would lack the most valuable 
monitoring features are included in the current EMCS.  

• Convert energy units to dollars: while campus energy managers regularly track kWh and 
Btus, tons and dollars resonate more strongly with plant operations staff. Therefore, the 
impact of faults and optimal setpoints are represented in terms of utility costs. Operators 
and energy management staff were interested in two cost scenarios – savings gained from 
changes that are implemented (to communicate the value of the team’s contributions to 
others in the organization), and the cost of not addressing changes (to facilitate approval 
of remedial actions and associated expenditures).   

• Limit the frequency of optimization: Although the tool was initially configured to 
generate optimal setpoints each hour, the operations staff were not comfortable 
implementing changes more than once a day. More frequent changes were deemed 
impractical, and risky. Over time, twice-daily changes may be integrated into operational 
routines to address overnight conditions.  
 
Both the alpha and beta versions of the tool were well received by the plant operations 

staff. The site has plans to develop standard operating procedures to formalize action taking 
based on findings from use of the tool. This is an important aspect of maximizing value - if there 
is no process to authorize changes required to modify setpoints and to eliminate faults, energy 
saving benefits cannot be achieved.  

Screen shots of the beta version of PlantInsight are provided in Figures 2-4. Figure 2 
shows the landing page of the tool. Since the text size in the images is small the contents are 
described in detail in the following. The period of time for which data is shown, and faults are 
summarized is user-selected and shown in the upper right hand date summary. In the plot, the 
total load on both plants (tons) is overlaid with the load from each plant individually. Above the 
plot, the total cost of operations, total consumption, maximum load, and number of current faults 
are summarized in KPI tiles.   

Figure 3 shows the condenser water temperature setpoint optimization features in the 
tool. In the upper plot, the total load on the plant (tons) is overlaid with the actual measured 
power, and that power that would be consumed under the model-determined optimal condenser 
water temperature setpoint. In the lower plot, the actual setpoint (degrees F) is plotted; as 
reflected in the horizontal trend, this is an annual constant under current operational strategies. 
The model-determined hourly optimal setpoint is also shown, along with the wet bulb 
temperature. The model-determined optimal generally follows the trend of the wet bulb 
temperature, suggesting that an automated solution could be implemented to remove the need for 
operators to manual adjust this control parameter.  
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Figure 2. Screen shot of the landing page of the PlantInsight tool.  

 
Figure 3. Screen shot of the condenser water temperature setpoint optimization features in the PlantInsight 
tool.  
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Figure 4 shows the fault detection and diagnostic features in the tool. In the upper plot, 
the chiller efficiency curve is plotted with kW/ton on the y-axis, and cooling tons on the x-axis. 
In the bottom plot, a time series of detected efficiency faults is provided. A time series of the 
measured coefficient of performance (COP) is overlaid with the model-predicted COP; when the 
two values diverge beyond a threshold size and probability, a fault is detected. Diagnostic fault 
aggregation to group faults instances based similarity of conditions is summarized in the lower 
right hand portion of the plot. Please refer to the section FDD and Optimization Algorithms for 
further description on how faults are detected and grouped for diagnosis. 

 

 
Figure 4. Screen shot of the fault detection and diagnostic features in the PlantInsight tool.  

Evaluation of Model-based Analytics Approach 

To evaluate the research question of whether physics-based models can be practically 
brought into operational tools, we consider scalability, required expertise, and maintainability 
and contrast with approaches based purely on rule-based and data-driven techniques. Admittedly, 
these approaches are diverse and quite varied, as are physics-based models, and the use cases for 
which they may be deployed. Therefore, we present a general discussion, based on the current 
state of today’s most readily available solutions. From the experiences and prior work that 
ground this discussion, we develop conclusions for future work.  

Given the modeling tools available today, physics-based model construction is more 
labor intensive and less scalable than rule-based and data-driven models. While non physics-
based approaches typically require tuning of key parameters, they are less likely to require 
customization or rebuilding for each new building or system encountered. Moreover, if 
components change, retrofits are made, or control sequences are modified, physical models may 
require modification. It is possible to leverage whole-building reference models that provide a 
more coarse representation of the building and its systems, however it is not clear that these offer 
sufficient resolution for reliable fault diagnostics and optimization. Depending on the specific 
modeling environment used, ‘stock’ components may be available from pre-existing libraries. 
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However the models must then be adapted for use with specific diagnostic algorithms. For 
example, in this work, the chiller model from the Modelica Buildings Library was adapted and 
modified for use in the state/parameter estimation phase of the fault detection algorithm.   

Model calibration requires a significant degree of specialized expertise in building 
modeling, operations, and building science. In general however, it can largely be conducted with 
data that is commonly available from building control systems. As in the case of rule-based and 
data-driven models, the required data often needs to be cleansed to fill gaps and filter extreme or 
erroneous values. Cost effective integration of control system data into analytics tools remains 
one of the most significant challenges to advancing the state of today’s technology, whether 
model-based or data-driven approaches are employed. In principle it is possible, but in practice 
the associated cost and complexity often outweigh the benefits of the advanced analytics that 
require the data integration. Once the data is obtained, care must be taken to ensure that the 
models are being calibrated in a physically meaningful way. Auto-calibration routines that codify 
some of the expertise that is needed for successful calibration are being developed by 
researchers, and are beginning to be offered to the industry (Sanyal 2014; Sun 2016). However, 
calibration approaches must be matched to the application. For example, calibration of a model 
used for a chiller fault detection as it operates through dynamic and steady state regimes may be 
quite different from that of a whole-building model that is used to determine faults in centralized 
HVAC systems. Finally, the questions of when to recalibrate and how to account for faults 
present in the calibration data are the subjects of ongoing research. 

As described in the Introduction, in theory, model-based approaches offer the potential 
for enhanced diagnostic power. PlantInsight permits detection of periods of low chiller efficiency 
that may be difficult to detect purely with data-driven approaches that are limited only to historic 
data. In general however, more research is needed to validate whether model-based fault 
detection, in practice, is more or equally effective than data-driven techniques. Finally, one can 
consider the infrastructural aspects of practically delivering model-based approaches for use in 
continuous operational analytics. The infrastructural requirements for such systems do not 
present a practical challenge for scaled delivery. Cloud-based software services dominate today’s 
solutions for operational analytics tools, precisely because of the cost-efficient, scalable, 
computational and hosting flexibility that they provide. 

 

Conclusions, Future Work 

This paper presented the development of a physical model-based FDD and optimization 
tool for a cooling plant. One conclusion on this work is that this approach is still cumbersome 
given all of the steps to build and calibrate the model for ongoing operational use. With further 
research to automatically calibrate and construct models, these types of tools could be made 
more ready for production use. These physics-based techniques remain a compelling direction 
for the continuous commissioning, optimization and FDD systems of the future.  One major 
advantage of a physics based models over data-driven models is the ability to extend them for 
retrofit analysis as well as those that focus on operational efficiency analysis. One can drop in 
new chillers, towers, or pumps and use the model for further analysis beyond the realm of prior 
historic operations. In addition, how the system should operate can be compared to how it has 
operated in the past. 

Scaled delivery of these approaches will require a change in industry capacity and 
expertise, as well as continued research and development to lower the bar of expertise that is 
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required. Today’s building energy analytics providers tend to have in-house data scientists, rather 
than the building scientists who are currently needed to work with these complex models. We 
also need to demonstrate the costs and benefits of these tools, and their advantages, to build 
market demand. Ideally, physics-based models will be used throughout the building life cycle –
from design, to initial commissioning, to ongoing operations, valuation of proper maintenance, 
and retrofit exploration. Even if these approaches are costly and complex if used solely for 
identifying and diagnosing waste and efficiency opportunities, there is certainly a role for model-
based approaches in holistic strategies for advanced, efficient building operation. The building 
energy analysis community is only beginning to have tools to deliver energy-aware transactive 
controls and dynamic, anytime optimization – capabilities that will surely be needed in the 
buildings and energy supply systems of the future.  

Future research will explore auto-calibration techniques for diverse types and 
applications of system and whole-building-level physical models. Solutions to automate and 
simplify the creation of physics-based models based on existing specifications, drawings, and 
building information models (BIM) are also needed for practical scalability. If the BIM vision 
were successful, and coupled with information on sequences of operations, one could generate 
digital specifications in a format that was interoperable with energy analysis tools. The next 
stage for greater tool interoperability would be the capability to automatically import trend log 
data to a model calibration routine. The development of standard, open FDD algorithms could 
ensure that algorithms, models, and calibration routines can be seamlessly integrated. Finally, 
there is a need for auto-correction and auto-tuning of controls based on the outputs of FDD 
algorithms. Most of today’s systems either optimize controls or perform FDD, but it is rare to 
close the loop by connecting the two. While not yet practical for deployment in today’s 
buildings, these model-based systems are important for the eventual delivery of truly optimal 
building performance.  
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