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ABSTRACT 

Over the past ten years, improvements in low-cost interval metering and communication 
technology have enabled load disaggregation through non-intrusive load monitoring (NILM) 
technologies, which estimate and report energy consumption of individual end-use loads. Given 
the appropriate performance characteristics, these technologies have the potential to enable many 
utility and customer facing applications. However, there has been skepticism concerning the 
ability of load disaggregation products to accurately identify and estimate energy consumption of 
end-uses; which has hindered wide-spread market adoption. A contributing factor is that 
common test methods and metrics are unavailable to evaluate performance without conducting 
large-scale field demonstrations and pilots, which can be costly. Without common and cost-
effective methods of evaluation, advanced NILM technologies will continue to be slow to market 
and potential users will remain uncertain about their capabilities.  

This paper reviews recent field studies and laboratory tests of NILM technologies. 
Several important factors are identified for consideration in test protocols so their results reflect 
real world performance. Potential metrics are examined to highlight their effectiveness in 
quantifying disaggregation performance. This analysis is then used to suggest performance 
metrics that are meaningful and of value to potential users and that will enable 
researchers/developers to identify beneficial ways to improve their technologies. 

Introduction 

Access to granular energy consumption information of individual end-use appliances and 
equipment can improve the energy efficiency of buildings and resiliency of the electric power 
grid. This information has the potential to enable many use cases (i.e. ways a user may apply the 
information collected), such as follows: 

  
• Inform residential customers, utilities, and transmission /distribution resource planners 

about energy use and load shapes of individual electrical appliances.  
• Enable M&V for utility demand response (verify individual electrical appliances have 

modified consumption accordingly in response to demand response command) and 
efficiency programs (verify savings from efficiency measures via more efficient end-use 
technologies). 

• Enable diagnostics and preventative maintenance of electrical appliances/systems for 
improved building operations.  
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However, current methods to monitor individual end uses are either very expensive and intrusive 
to the building (e.g. directly sub-metering end uses) or indirect and non-intrusive, which are 
unproven thus far to perform at the levels desired for relevant use cases (Mayhorn et al. 2015, 
Armel et al, 2012, Zoha et al. 2012, Zeifman et al., 2011a, Berges et al., 2010).  

There are several types of indirect monitoring methods to acquire end-use energy data. 
Non-intrusive load monitoring (NILM) technologies have the potential to offer a low-cost, 
scalable method for acquiring end-use data. NILM is a data analytics approach that uses limited 
measurements taken at the whole building level (e.g. utility meter or current transformers  
installed at the building breaker panel) coupled with assumptions about behavioral habits (i.e. 
average load shapes) to disaggregate end-use energy consumption. Since buildings have a wide 
spectrum of end-use types, each with an array of models and unique behavioral patterns, NILM 
vendors face significant challenges with identifying and inferring energy consumption of end 
uses.  

Although NILM has the potential to enable many use cases that support energy 
efficiency, there are market barriers preventing widespread adoption of this technology. First, 
expensive large-scale field studies, which can take more than a year to complete (Mayhorn et al. 
2015, Pecan Street 2015,  White 2014) due to the need to capture load diversity, seasonal loads, 
and complete the analysis, are required to demonstrate and understand the performance of NILM 
products in the field. For NILM technologies to be successful, their target customers need a valid 
demonstration of performance to justify investment in the products.  

Second, the NILM industry does not have a clear understanding from potential users 
which capabilities and performance characteristics are important to consider for the range of use 
cases these technologies could potentially support. For example, use cases may involve a 
different set of appliances than those desired by potential users. Without clear understanding of 
the range of use cases and expectations for those use cases, it is difficult for the NILM industry 
and researchers to prioritize and focus R&D efforts to develop the technology to have the 
capabilities and performance desired.  

Third, previous and/or current evaluations of NILM have led to uncertainty in the market 
and raised skepticism about its performance capabilities. Several NILM lab test and field study 
performance evaluations have been performed and published recently (Butner et al. Dec 2013, 
EPRI 2013, Mayhorn et al. 2015, Pecan Street 2015,  White 2014), as summarized in Table 1. 
Each study considers unique appliance types, evaluation periods, metrics, sample datasets or 
tests, time scales or intervals for applying metrics, and evaluation methods.  

Increasing confidence in NILM disaggregation capabilities is needed to accelerate market 
adoption. This calls for the NILM industry to come to an agreement on the appropriate test 
protocols. For this reason, PNNL has initiated an effort to develop test protocols to evaluate 
NILM performance in collaboration with the NILM Protocol Development Advisory Group 
formed. The advisory group consists of 17 members, representing key stakeholders, including 
NILM vendors, researchers, field evaluators as well as utility/energy efficiency organizations 
and alliances. The goal of the test protocols is to mitigate the need for repeated large-scale field 
studies and eliminate the confusion as to which metric(s) are necessary to objectively quantify, 
compare and communicate NILM performance. The test protocols should have the appropriate 
elements necessary to reflect real-world performance. In addition, metrics should be selected and 
applied carefully so results are not misinterpreted. This paper discusses the critical factors to 
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consider when developing a test protocol that captures real-world performance. It also examines 
a set of candidate NILM performance metrics by applying the metrics to several scenarios 
representing different types of end-use behaviors and possible types of error in NILM energy 
estimates. Recommendations are given for suitable metrics, which have also been agreed on by 
the NILM Protocol Development Advisory Group. 

Table 1. Overview of NILM performance evaluations 

 End use types Evaluation 
Period 

Metrics # of tests 
/ samples 

Time 
scales 

Evaluation Method  

EPRI 
Round 1 
Lab Test 

HVAC; Water 
heater; Clothes 
dryer; Range; 
Refrigerator; 
Freezer; Pool 
pump; Fan; 
Lighting;  
Microwave;  

1 week 
training 
period; 2 
week 
evaluation 
period 

RMSD; , σ; 
average % 
estimated 
premise 
energy use to 
total; # of 
isolated loads 

1 test  1 min 
5 min   
15 min 
1 hr 
Daily 
Weekly 

Laboratory test; 
emulated typical use 
of average single-
family home; 
appliance schedules 
based on DOE 
Building America 
benchmark 

PNNL 
2013 
PNNL 
Lab 
Homes 
Test 

25 W table lamps; 
240 W hardwired 
light fixtures;          
2 kW Electric 
resistance water 
heater (ERWH) 

1 week # of correctly 
identified 
loads; event 
detection 
accuracy; 
energy 
estimation 
accuracy; 
repeatability  

1 test  
 

Weekly PNNL Lab Homes;  
simultaneous / 
sequential loads 
scheduled at varying 
periods (1 min, 10 
min, 1 hour) 

Pecan 
Street/ 
EEme 
Assess-
ment 2015 

HVAC; 
Refrigerator; 
Clothes dryer; 
Dishwasher 
 

1 year Absolute error; 
relative error 
 

264-
homes   

15 min  Data-driven 
evaluation; metered 
energy data of actual 
homes  

NEEA 
NILM 
Field 
Study  

Clothes dryer; 
Water heater; 
Refrigerator; 
Furnace; ER Heat; 
Freezer; 
Dishwasher; 
Oven/Range; 
Clothes washer 

24 weeks 
filtered data 

% standard 
deviation 
explained;  r-
squared  

4 homes  5 min or 
Daily  

NILMs installed in 
different PNW region 
homes; each home 
contained different 
set of appliances 
types/models 

SDG&E 
NILM 
Case study  

Electric Vehicle; 
HVAC; Pool 
pump; Oven; 
Refrigeration/ 
Freezer; ERWH; 
Dryer  
 

1 year 
filtered data 

RMSD; , σ;  
f-score; error 
in assigned 
power; r-
squared; error 
in total 
assigned 
energy 

11 homes Daily or 
monthly  

10 sec energy use 
data collected using 
Rainforest 
Automation Eagle 
gateways or 1 hr  
SDG&E Green 
Button Connect data  
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Important Elements of Test Protocol to Assess NILM Performance 

The objective is for this protocol is to overcome some of the barriers with developing the 
technology to the desired levels for priority use cases. Specifically, the goals of the test protocol 
are to: (1) minimize the need for large-scale field studies to demonstrate and understand 
performance of NILM, and (2) improve confidence in NILM performance capabilities through a 
common evaluation method. Several lessons learned have been identified and itemized based on 
examinations of NILM performance and investigations into current NILM product 
specifications. Each of these lessons should be considered when making decisions regarding 
particular elements to include in a test protocol that is able to capture real-world performance. 

Lessons 

Lesson 1: NILM industry was unclear about desired performance requirements for a wide 
range of potential use cases. Performance requirements haven’t been clearly defined for the 
wide range of use cases that NILM has the potential to support or enable. Therefore, a common 
set of important performance characteristics (i.e. NILM can identify end uses properly, detect 
events, estimate energy use, etc.) should be communicated to the NILM market in a uniform 
way, similar to how a set of nutrition facts are presented on food labels for a wide range of 
consumer types to make food choices. Communicating the information in a clear, common way 
would reduce uncertainty in the market about NILM performance as well as enable potential 
NILM users to make decisions about whether NILM is suitable for their use cases. When 
developing test protocols, it is imperative to understand and define a general list of performance 
characteristics that are important to measure and communicate to the NILM market. This list 
should be considered when determining the appropriate set of protocols and metrics to evaluate 
performance characteristics. In addition, there is a large and emerging spectrum of end-use types 
available in buildings. Every end use cannot be considered in assessments of NILM performance 
in the near term. Therefore, an understanding of the end-use types that are of interest for high 
priority use cases should be used to determine the most suitable set of end uses to include in the 
evaluation protocols.  
 
Lesson 2: May take measurement inputs at the different sampling rates. NILM products 
under development and/or commercially available require building level measurement inputs to 
be taken at sampling rates that range from megahertz (MHz) to hourly. For approaches requiring 
building measurement inputs at one-minute time intervals or greater, a data-driven test method 
could be chosen using the metered data collected from field studies. A data-driven methodology 
would use whole building and sub-metered building energy data that have been previously 
collected (for example the ~1,200 occupied residential and commercial buildings data set 
collected by Pecan Street at as low as one-minute intervals over a year). The whole-building 
energy data could be used as inputs to NILM products under evaluation. Then, the energy 
estimates reported for each end use to be compared to the corresponding sub-metered end-use 
data. However, any NILM product requiring inputs at less than one-minute intervals would be 
ineligible for testing using a data-driven test method. Therefore, a laboratory test method is 
another option to ensure a fair comparison across all NILM products regardless of input 
sampling rate. A laboratory test would be more expensive than a data-driven protocol due to the 
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costs of purchasing a representative set of specific end-uses. There is a wide spectrum of end-use 
types and models available that have different programmed modes for use, so selecting a proper 
set of end uses to include in the test and base the assessment on would be a critical decision to 
ensure the test is able to characterize real world performance. 
 
Lesson 3: May rely on load pattern library and/or other behavioral cues. NILM algorithms 
are usually proprietary, but many rely on assumptions about end-use behavior, such as load 
shape patterns, to inform energy use estimates. Therefore, NILM evaluations should incorporate 
realistic or typical use behavior of end uses. In particular, for each end-use type selected for 
evaluation of NILM, a statistically large number of tests or samples data sets should be selected 
to capture real-world performance. 
 
Lesson 4: May require a training/learning period. The length of experiments to evaluate 
NILM performance should be selected carefully. NILM technologies may need training to learn 
end use signatures, so NILM performance is not unfairly penalized during those periods. Test 
protocols should include a separate training period for seasonal end uses (i.e. space cooling and 
heating equipment). 
 
Lesson 5: May have limitations on time intervals for reporting energy use. NILM may not 
be able to evaluate all desired performance characteristics identified because of limitations on the 
time intervals for reporting energy use (i.e. 1 hr or 24 hr intervals). For example, users may want 
to understand performance at short to long time scales or understand performance in detecting 
ON/OFF events of end uses. Therefore, for all performance characteristics to be quantified, it is 
important to indicate time intervals in the reported results when applying the metrics to evaluate 
the relevant performance characteristics. 
 
Lesson 6: NILM products have labeling inconsistencies. While some efforts have been 
initiated (Kelly et al. 2014), a naming convention for labeling end use types has not been fully 
adopted by the NILM industry. Without consistent naming conventions, it becomes challenging 
to evaluate NILM performance by end use. For example, assume the compressor and defrost 
elements of the same refrigerator were tracked by a NILM, but are labeled as two separate loads 
(i.e. Load 1 and Load 2). If the Load 1 NILM data is selected, instead of both Load 1 and 2 data, 
the NILM performance results will be very different. Also, NILM products may track some end 
uses well but label the end uses incorrectly. Test protocols should be defined to consider labeling 
or identification inconsistencies so that the performance can be uniformly assessed. 

Lesson 7: Performance can be misunderstood if the appropriate metrics are not selected 
and applied carefully. Based on data collected from the Northwest Energy Efficiency Alliance 
(NEEA) NILM Field Study (Mayhorn et al. 2015), the “accuracy” in a NILM energy use 
estimates was computed to be 72.4% for a refrigerator, based on a 24-week study period and the 
relative error metric. Figure 1 shows the NILM and baseline energy-use profiles for the 
refrigerator in the home over a 24-hour period. From this figure, it is clear that the NILM product 
is not tracking the energy use of a refrigerator even though the energy accuracy was determined 
to be very high. In this case, the NILM device was actually reasonably tracking the energy-use 
profile of a water heater. Because the water heater has several large energy draws over short 
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durations that are comparable to the total energy consumption of a refrigerator over a longer 
duration, the results based on this metric and how it was applied could be misinterpreted if it 
were used to convey the NILM device performance.  

 

 

Figure 1. Refrigerator Energy Profile (over 1 day) from a home in of NEEA NILM Field Study 

Candidate NILM Performance Metrics 

Based on current research (Butner et al. 2013a, Mayhorn et al. 2015, Zeifman et al., 
2011b, Liang et al., 2010), the NILM industry has yet to select and adopt a common set of 
metrics for performance verification of NILM devices. The conclusion drawn from the initial 
NILM research was that there are many aspects that should be considered when defining the 
“accuracy” or performance of a NILM, and multiple metrics may be required to evaluate 
performance. A list of candidate metrics were assembled from previous NILM research (Batra et 
al. 2014, Holmes 2014, Mayhorn et al. 2015, Pecan Street 2015, Timmermans and Sachs 2015), 
as well as from  metrics proposed by the Advisory Group formed. The metrics fall into the 
following two main categories that may be of interest to potential users of NILM:  

 
• Event Detection (ED) Performance – metrics designed to evaluate a NILM’s ability to 

track the energy use patterns of end-uses over time. Using these metrics, the performance 
is quantified with consideration for the number of true positive, false positive, true 
negative and/or false negative events computed using disaggregated energy use data.  

• Energy Estimation (EE) Performance – metrics designed to characterize and evaluate 
NILM disaggregated energy use versus known “ground truth” end-use data. This set of 
metrics consist of basic statistics (e.g. mean and standard deviation of error), advanced 
statistics indicating goodness of fit of NILM and ground truth data (e.g. R-squared and 
percent standard deviation explained) and other error statistics evaluating relative, 
average, and per-event/time step error. 
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Even though ED metrics indicate NILM’s ability to codify individual events and track energy 
use patterns overtime, the NILM Protocol Development Advisory Group came to an agreement 
that ED performance was implicit in the EE metrics considered, so only the EE performance 
metric category is needed. Table 2 presents the full list of EE performance metrics evaluated.  

Table 2. Energy estimation performance metrics evaluated  

Metric Metric Equation 

EE 1:  Relative Error 

 
EE 2: Root Mean Square 
Deviation 

 

 

EE 3.1: Average Error 
 
 
 

 
EE 3.2:  Standard Deviation of 
Error 

 
EE 4: Percent Standard Deviation 
Explained 

 

 
EE 5: R Squared 

 
EE 6:  Energy Error 

EE 7:  Energy Accuracy 
 

EE 8: Match Rate 

 
EE 9: Mean Standard Error  

 
= NILM energy data at each time interval i                                              σ = standard deviation of the error over the data set 
= Metered data ate each time interval i                                                     α = mapping factor defined to be 1.4 

Ē = Average metered energy over the data set. .                                           i = indexing variable for each time step 
ΔE = error between the NILM and metered data 
N = number of observation or events based on each time step 

Metrics Evaluation and Recommendations 

NILM energy use estimates can embody multiple types of error. For example, NILM data 
may contain a combination of under-estimated energy use, time offsets in estimates as well as 
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missed and falsely detected events. Therefore, it is challenging to determine whether the values 
obtained from applying metrics accurately represent NILM performance. To recommend 
intuitive and meaningful metrics that are suitable for NILM performance verification, the 
response of all 10 candidate metrics in Table 2 were examined under a variety of hypothetical 
and error scenarios, each with different error types and magnitudes in the data, as well as 
different types of appliances. Specifically, the metrics were applied to a set of real-world 
appliance energy use data that were collected as part of the NEEA NILM field study (Mayhorn et 
al., 2015). These real-world data, 5-minute interval data by end-use were duplicated and altered 
to systematically to introduce known errors in NILM energy use estimates. The discrepancies 
introduced between the NILM estimates and real world data were intended to model typical 
errors encountered with NILMs and are based on findings of the NEEA RBSA field study 
(Mayhorn et al. 2015). The types of errors considered are:  

 
• Consistently over-/under- estimating energy by a nominal percentage (e.g., 5%, 25%, 

50%) of actual appliance energy use. 
• Consistently over-/under- estimating energy by a constant value relative to actual 

appliance energy use. 
• False positives/negatives – estimates include percentage of false positive/negative events 

relative to total number of actual ON events. 
• Constant time offsets in runtimes – energy estimates are delayed by one or more time 

intervals. 
 
To better illustrate some of the real-world data errors identified, Figure 2 below presents 

a single day of actual NILM and metered refrigerator energy use data from the previous research. 
Of interest is the consistently lower energy reading detected by the NILM and the missed events 
related to the refrigerator defrost cycle occurring at about 6:00 AM. Data such as these, with the 
discrepancies, were useful in identifying and quantifying data errors and became the basis for the 
error scenarios considered. 

 

 

Figure 2. Refrigerator Daily Energy Profile Reporting Baseline (Metered) and NILM Energy Use    
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Table 3 presents the list of NILM error scenarios generated from real world energy use 
data for three different appliance types: refrigerators, clothes dryers, and water heaters (Mayhorn 
et al. 2015). Some of these errors were exaggerated to test the limits of the metrics and identify 
non-linear responses among other metric issues. The data sets for each simulated error scenario 
are one week in duration and constructed with five-minute intervals.     

Table 3. Simulated Error Scenarios to Evaluate NILM Metrics 

NILM 
Error 

Error Scenario Data Modifications 

NE 1 One interval offset of actual appliance energy 
data 

NILM data shifted forward by 1 
metering interval 

NE 2 Five interval shift of data NILM data shifted forward by 5 
metering intervals 

NE 3 NILM under-estimates actual energy by 5%  All NILM data values reduced by 5%   
NE 4 NILM under-estimates actual energy by 25% All NILM data values reduced by 25% 
NE 5 NILM under-estimates actual energy by 50% All NILM data values reduced by 50% 
NE 6 NILM over-estimates actual energy by 25% All NILM data values increased by 

25% 
NE 7 NILM estimates energy perfectly but include 

5% missed events 
5% of events removed from NILM 
data set 

NE 8 NILM estimates energy perfectly but include 
25% missed events 

25% of events removed from NILM 
data set 

NE 9 NILM estimates energy perfectly but include 
50% missed events 

50% of events removed from NILM 
data set 

NE 10 NILM estimates energy perfectly but include 
25% false events 

NILM data set has 25% additional 
false events introduced 

NE 11 NILM over-estimates energy by a low 
constant value 

All NILM data values increased by 
0.001 kWh 

NE 12 NILM over-estimates energy by a high by a 
constant value 

All NILM data values increased by 
0.004 kWh 

Metric Evaluation Approach 

The metric evaluation process was designed to apply the proposed metrics in a consistent 
manner across all simulated error scenarios and then evaluate the response to each scenario. For 
each scenario, each metric was applied in three different ways to understand sensitivity to the 
number of true negative events encountered as well as to the time period considered. In the first, 
all data points over the full one week data sets were used in the evaluation. Second, all records of 
true negative events were omitted. The third way is similar to the first, but only takes a half week 
of data into account. The analysis was automated using MATLAB resulting in compiled output 
tables suitable for results comparison.  

To evaluate the metrics, the resulting values from all scenarios were reviewed against the 
expected performance, and the metrics were assigned a rating for each scenario on a scale of 0 - 
3, where: “0” indicates that the metric value is not apparent or explainable, “1” indicates an 
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apparent trend in metric value but not a value near the expected, “2”  indicates the resulting 
metric value  approximates the value expected, and “3”  indicates the resulting metric value is 
precise based on value expected. To decide the rating, several factors were kept in mind: (1) 
precision of fit to known error, (2) occurrence of values outside of 0 to 1 range, (3) occurrence of 
non-linearity of values with the progression of error across scenarios (e.g. 5%, 25% and 50% 
error), and (4) intuitive and explainable results. Once these ratings were determined based on 
each error scenario, a score for each metric was assigned by summing the ratings to compare 
metrics. Comparing all metrics in this fashion allowed the evaluation team to identify those 
metrics which are most robust to a wide range of error types and most suitable for assessing 
NILM performance.  

Metric Evaluation Results 

When evaluating the energy estimation metrics, all scenarios listed in Table 3 were 
considered. Therefore, the highest possible score for this set of metrics is 36. After reviewing the 
values for the metrics evaluated against the expected outcomes, it became clear that a number of 
the metrics operated well with simple errors (e.g., a 5% error in NILM data, NE 3 in Table 3), 
but exhibited out-of-range (negative values or values greater than 1) or did not scale as expected 
as the errors were systematically increased (e.g., the progression of a 5% error to 25% and 50%). 
The tallied scores for each metric evaluated are given in Table 4. EE 6, EE 7 and EE 8 were the 
three metrics that stood out from the rest. For all error scenarios, the values obtained were close 
to the performance values expected. However, in some scenarios with relatively large error, EE 6 
would result in values greater than 1, making the metric values less intuitive and explainable. 
The EE 7 metric was proposed with the intent to ensure that the quantified performance values 
are between 0 and 1. However, this metric would require tuning of the  parameter to ensure the 
specific values accurately represent the performance. EE 8 does not require tuning of parameters 
to ensure values are not misinterpreted, and the resulting values based on each scenario appear to 
be an accurate representation of NILM performance.  

Table 4.  NILM metric scores for candidate EE performance metrics 

Metric Metric Description Metric Score 
EE 1 Relative Error 30 
EE 2 Root Mean Square Deviation 16 
EE 3.1 Average Error 12 
EE 3.2 Standard Deviation of Error 12 
EE 4 Percent Deviation Explained 16 
EE 5 R Squared 12 
EE 6 Energy Error 32 
EE 7 Energy Accuracy 30 
EE 8 Match Rate 35 
EE 9 Mean Standard Error 12 
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Metric Recommendations and Application 

Based on the metrics analysis completed, it is recommended that EE 8 be used to assess 
energy estimation performance of NILM. The analysis and results presented in this paper were 
discussed with the NILM Protocol Development Advisory Group, and a consensus was reached 
that the EE 8 should be used for NILM performance evaluations. However, it is important for 
metrics to be applied carefully such that performance values have the same meaning across 
different end uses of various sizes (high/low energy use loads) and patterns of use 
(regular/intermittent load cycles). For example, the errors computed relative to low energy use 
may be less significant when compared to a high energy use load. In addition, some end uses 
operate less frequently than others, so metric results may not be representative of performance if 
a statistically significant number of run times are not captured. Given these issues, it is 
recommended that any metric evaluation takes into account some leveling of energy use or other 
basis for fair performance comparisons across different end uses.  This basis may be in the form 
of a fixed energy use for each NILM evaluation per end use (e.g., a 10 kWh actual energy for 
refrigerator and a dryer) for EE metrics, a fixed number of actual events per end use for ED 
metrics, or a fixed duration that is able to capture a range of conditions (e.g., 1 week of a typical 
operation patterns).     

Conclusions 

To overcome market barriers for NILM technologies, it is critical that a common set of 
test protocols and metrics be developed to convey performance in a consistent and meaningful 
way to potential users as well as to reduce the need for large scale field studies to evaluate 
performance. Several important factors were offered for consideration when developing test 
protocols to reflect real world performance. Thus far, as part of the NILM protocol development 
effort at PNNL, 10 candidate metrics have been identified and examined from the literature and 
advisory group for assessing energy estimation performance. The metrics were applied to a 
variety of error scenarios with known performance expectations, each representing a different 
type/magnitude of error that can be encountered by NILM. These scenarios were created to 
determine whether the responses of the metrics are intuitive. Metric EE 8 was demonstrated as 
the most robust in representing performance across all error scenarios considered and is 
recommended for evaluating NILM performance. The value of this metric is bounded between 0 
and 1, therefore could be used to easily convey performance. In addition, all values reported 
were very close to the performance expectations in all error scenarios considered. The next steps 
in the PNNL protocol development effort are to weigh the advantages and disadvantages of 
developing a data driven versus laboratory test method for evaluation, and then iterate with the 
Protocol Development Advisory Group to develop the appropriate protocols for agreement by 
important NILM stakeholders.  
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