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ABSTRACT 

Supermarkets offer a substantial demand response (DR) resource because of their high 
energy intensity and use patterns; however, refrigeration as the largest load has been challenging 
to access. Previous work has analyzed supermarket DR using heating, ventilating, and air 
conditioning; lighting; and anti-sweat heaters. This project evaluated and quantified the DR 
potential inherent in supermarket refrigeration systems in the Bonneville Power Administration 
service territory. DR events were carried out and results measured in an operational 45,590-ft2 
supermarket located in Hillsboro, Oregon. Key results from the project include the rate of 
temperature increase in freezer reach-in cases and walk-ins when refrigeration is suspended, the 
load shed amount for DR tests, and the development of calibrated models to quantify available 
DR resources. Simulations showed that demand savings of 15 to 20 kilowatts (kW) are available 
for 1.5 hours for a typical store without precooling and for about 2.5 hours with precooling using 
only the low-temperature, non-ice cream cases. This represents an aggregated potential of 20 
megawatts within BPA’s service territory. Inability to shed loads for medium-temperature (MT) 
products because of the tighter temperature requirements is a significant barrier to realizing 
larger DR for supermarkets. Store owners are reluctant to allow MT case set point changes, and 
laboratory tests of MT case DR strategies are needed so that owners become comfortable testing, 
and implementing, MT case DR. The next-largest barrier is the lack of proper controls in most 
supermarket displays over ancillary equipment, such as anti-sweat heaters, lights, and fans. 

Background 

Demand response (DR) efforts can help utilities manage capacity additions to the 
electricity grid. Most buildings-related DR programs are planned around residential air-
conditioning units, commercial lighting, and set point changes to heating, ventilating, and air-
conditioning (HVAC) systems. These programs work well, but utilities are interested in 
additional DR resources. Beginning with its Fifth Power Plan (NPCC 2005), the Northwest 
Power and Conservation Council (NPCC) began to estimate the potential size of DR reserves in 
the Pacific Northwest and formulate strategies to encourage their creation. In its Sixth Power 
Plan (NPCC 2010), NPCC identified a need for additional pilot research programs to provide the 
precise and essential information needed to acquire cost-effective DR resources to help balance 
the supply and demand of electricity on the grid. 

Supermarkets offer a substantial DR resource because of their high energy intensity and 
use patterns. In the 2009 Northwest Energy Efficiency Alliance Commercial Building Stock 
Assessment (The Cadmus Group, Inc. 2009), the “Grocery” category represented about 100 
million ft2 or roughly 3% of total commercial floor area, but had the second-highest electricity 
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energy use intensity of all building types—more than 40 kWh/ft2/year—due to extended 
operating hours and continuously operating commercial refrigeration systems. Electricity use 
was high all year but peaked in the summer. Total 2007 electricity use by the sector was 
4,142,000 megawatt-hours (MWh) or 11% of total commercial building energy consumption in 
the Pacific Northwest. Averaged evenly over the year, this is about 470 megawatts (MW). 

Supermarket refrigeration has several advantages over other commercial building end 
uses when considering DR. First, the equipment and controls necessary to execute DR strategies 
are common in refrigeration systems. Modern refrigeration controllers are also enabled to 
communicate over the Internet. These facts reduce the first cost of implementing DR in 
supermarkets because additional equipment is not required. Refrigerated display cases also have 
built-in thermal capacitance due to the large mass of cooled or frozen product. Therefore, 
product temperature will rise slowly when refrigeration is temporarily suspended, lagging behind 
the rise in air temperature and extending the length of time refrigeration can be paused.  

Of course, there are limitations to how much cooling can be increased or reduced before 
product quality is affected. For this study, an upper limit of 15°F was placed on low-temperature 
(LT) cases and walk-ins, and a limit of -5°F was placed on ice cream cases and walk-ins. System 
capacity limits prevented case and walk-in temperatures from dropping below -12°F. Except for 
the beer case, medium-temperature (MT) cases were off limits for set point changes. 

Unlike store lighting or HVAC, service need not be curtailed when DR is activated. 
Ideally, DR in refrigeration systems will be invisible to customers. This study investigates the 
amount of load shed that can be accomplished while keeping products within temperature 
boundaries recommended by supermarket owners. 

Relevant, previous DR work includes pilot projects and deployment efforts in 
supermarkets and in refrigerated facilities. The California Energy Commission reported 7.5 MW 
of peak demand shed from 300 Albertsons supermarkets (equivalent to 6% load shed) using sales 
floor lighting and anti-condensate heaters (CEC 2005). Previous supermarket DR work appears 
to have excluded the compressors. To our knowledge, this project with the BPA is the first 
publicly documented DR pilot project in supermarkets that involves the refrigeration systems. 

Project Overview 

This project was concerned with quantifying the DR potential inherent in supermarket 
refrigeration systems in an operating store. Ancillary aims of the project were to identify 
practical barriers to implementation of DR programs in supermarkets through real-world tests 
and to determine which high-level control strategies were most appropriate for achieving certain 
DR objectives through modeling and field testing. The scope of this project does not include 
detailed control strategy development for DR or development of a strategy for regional 
implementation of DR in supermarkets. 

Specifically, five objectives were pursued in this study: 
 

• Conduct pilot tests to understand stakeholder concerns and barriers to implementing DR.  
• In the course of these tests, evaluate strategies that can provide 3- to 4-hour capacity 

reserves (identified as a key DR resource by BPA). 
• Conduct additional experiments in an operating supermarket for the purpose of 

developing reliable models to quantify DR potential.  
• Use these models to estimate the aggregated supermarket DR resource available to BPA. 
• Recommend future research and other work to maximize DR potential in supermarkets. 
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Store Description 

The tests for this study were conducted at a 45,591-ft2 full service supermarket located in 
Hillsboro, Oregon, that operates from 8 a.m. to 10 p.m., Monday through Friday. Based on two 
years of utility bills, the monthly peak demand varies between 350 kW and 450 kW. 

The refrigeration system for this store has two compressor racks for two suction groups; 
rack A for -20°F and +13°F and rack B for a +18°F suction group. Rack B represents 65% of 
total refrigeration capacity. All MT cases were off limits for set point changes because these 
products have a narrow temperature range between freezing on the low end and spoilage at the 
high end. Ice cream consistency is sensitive to temperature changes. Therefore, only some of the 
LT cases were included in this study. The LT refrigeration cases and those eligible for DR 
testing (about 36%) are listed in Table 1. 

 
Table 1. Rack-A low temperature refrigeration cases  

Refrigeration 
circuit 

DR 
eligible 

Capacity 
(Btu/h) 

Suction 
temp 
(°F) 

Defrost schedule Case set 
point 
(°F) 

Seafood Yes 10,000 -25 4/day 2:30, 8:30, 14:30, 20:30 0 
Grocery Yes 24,000 -25 4/day 3:00, 9:00, 15:00, 21:00 -8 
Meat  Yes 9,000 -25 4/day 3:30, 9:30, 15:30, 21:30 0 
Meat Yes 8,960 -20 1/day 4:00 0 
Food/ice cream No 15,840 -16 1/day 5:00 8 
Ice cream No 10,560 -16 1/day 5:30 8 
Frozen food Yes 14,520 -16 1/day 0:00 0 
Frozen food Yes 11,880 -16 2/day 0:00, 12:00 0 
Seafood Yes 10,560 -16 1/day 1:00 0 
Bakery No 15,000 -25 4/day 3:00, 9:00, 15:00, 21:00 0 
Prep. food Yes 14,000 -25 3/day 3:30, 11:30, 19:30 -12 
Roll prod No 23,820 +21 6/day 4:30, 8:30, 12:30, etc. +32 
Seafood No 17,500 +20 3/day 5:00, 13:00, 21:00 +39 
Meat No 17,500 +20 3/day 5:30, 13:30, 21:30 +30 
Poultry #1 No 15,500 +20 4/day 0:00, 6:00, 12:00, 18:00 +36 
Bakery No 14,500 +20 2/day 00:30, 12:30 +35 
Prep. foods  No 26,000 +20 3/day 1:00, 9:00, 17:00 +34 
Poultry #2 No 9,400 +20 4/day 1:30, 7:30, 13:30, 19:30 +32 

 
The refrigeration system in the test store uses a floating suction control strategy in which 

the suction pressure (refrigerant pressure entering the compressors) set point is raised under low 
load conditions. The floating suction control strategy saves energy by reducing the temperature 
“lift” that must be delivered by the refrigeration system to move heat from a cold side (the 
evaporator) to a warm side (the condenser). This control strategy works by shifting the saturated 
suction pressure set point higher when the critical cases are below a specified threshold and 
lower when the critical cases warm up above that threshold, within a prespecified range. The ice 
cream cases are critical cases, and the suction pressure floated between 17 and 27 psig, 
corresponding to a range of -7°F to +5°F. 

Electronic evaporator pressure regulators (EEPRs) were installed on the test circuits to 
enhance the controllability and allow each case evaporator to be changed using a digital signal 
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rather than manual adjustment. This allowed precise and quick modulation of set points during 
testing. It also allowed many tests to be run remotely and on short notice by avoiding the need 
for a refrigeration technician to be present in the compressor room throughout the entire test.  

Product simulators were installed to emulate product temperatures. The product 
simulators have a thermistor enclosed in a stainless-steel housing using epoxy. The associated 
thermal mass allowed the product simulators to respond to case air temperature changes in a 
manner similar to real products. Controllers specially equipped to allow control based on 
simulator temperature were also installed on cases of interest.  

Testing Methodology 

An initial set of tests were performed to understand the warming rate of product and case 
air during a DR event. Several tests were run in which the refrigerant flow was shut off with the 
results shown in Figure 1. The rate of product simulator temperature rise in a reach-in frozen 
food case when refrigeration was turned off, based on an average of three product simulators, 
was found to be 0.16°F/min or 9.6°F/h. The rate of product simulator temperature rise in the 
meat walk-in freezer when refrigeration was turned off was 0.04°F/min, or 2.4°F/h. Note that the 
precision of the product simulators was 1°F, causing the illusion of a stepped progression of 
temperature in time. 

 
Figure 1. Reach-in and walk-in freezer product simulator temperature rise with time 

These numbers set a fundamental time constant for DR events and provide a rough 
estimate for how long cooling can be suspended. For example, the operation of the compressor 
rack is typically controlled based on the temperature in critical cases—generally reach-in freezer 
cases containing ice cream. Ice cream cannot exceed -5°F without risking change in consistency, 
and the product is typically kept at -8°F, so the amount of time the system can be “turned off” is 
only on the order of 20 minutes. This duration can be extended to about 45 minutes if the product 
is precooled to -12°F. The main focus of this report is evaluating strategies using existing 
equipment and controls that can provide 3- to 4-hour capacity reserves, which were identified as 
a key DR resource requirement by BPA. 

Three control approaches were considered in this project—using existing control points, 
using product simulators, and precooling. Without adding equipment or making significant 
control algorithm changes, there were two control strategies that the team could use to modify 
the power consumption of the LT refrigeration system. These were the suction pressure set point 
of the whole compressor rack and the evaporator discharge air temperature (DAT) set points for 
the individual noncritical (i.e., not containing ice cream) reach-in and walk-in refrigeration 
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circuits. The saturated suction pressure set point could only be made 4°F colder (-8°F to -12°F), 
reflecting the capacity of the system, and 3°F warmer (from -8°F to -5°F) due to concerns about 
melting the ice cream in the critical reach-in case. The evaporator DAT set points for other cases 
were more flexible and could be varied from -12°F to +15°F. For all product types, it is critical 
to understand the supermarket owner’s concerns in terms of food safety, food integrity, and store 
operation, so that DR does not result in adverse outcomes. 

Product simulators were first installed in reach-in and walk-in cases as a risk mitigation 
strategy. The product simulators have a thermal mass that mimics a frozen product and a central 
thermistor that sends data to the refrigeration controller for viewing and trending. Controls based 
on the product simulators reduce the risk of exposing frozen products to unacceptably high 
temperatures. In addition they present a DR strategy alternative to the DAT set point because 
they warm up slower than the air temperature thus allowing the refrigeration compressors to be 
turned off for longer periods. 

There are two challenges to be aware of when using a product simulator temperature as a 
control strategy. First, the set point should be set conservatively to avoid product temperature 
overshoot as there is a delay in cooling the product when cooling is restored to the case. Second, 
control should be returned back to the evaporator DAT at the conclusion of the DR event to 
avoid the compressors running at a high power for an extended period trying to bring the product 
simulator temperature down. Under DAT control, the air temperature control signal will drop 
quickly, allowing the system to return to its original operation (and power consumption) sooner.  

Precooling was investigated as a way to extend the DR events and was achieved by 
dropping the discharge air set point for the critical cases and noncritical reach-ins and walk-ins to 
-12°F for several hours. This was done operationally by dropping the set point for the critical 
cases and opening the EEPR valves on the noncritical cases and walk-ins. This approach can also 
be used to provide a demand-add event, consuming additional power to balance a variable 
renewable resource such as wind. 

Modeling Methodology 

Pilot tests offer many opportunities for identifying real-world issues that may arise during 
DR events, including a better understanding of the potential load shedding available in 
supermarkets, and insight into the effectiveness of specific strategies. However, due to the time 
and cost constraints associated with field testing, a much broader understanding of DR potential 
as well a more exhaustive investigation of candidate control strategies can be gained by using 
accurate and reliable models. Two modeling efforts were pursued for this project. The first was 
with existing whole building energy simulation software, in this case EnergyPlus (DOE 2015a). 
For the second effort, new models were generated from measured data that allowed for 
simulation of refrigerated case dynamics.  

Whole Building Energy Model 

The analysis of DR resources began with a calibrated EnergyPlus model of a similar 
store. This energy model was used to explore the maximum potential DR by turning off all cases 
and walk-ins on one LT rack and select cases/walk-ins on the MT rack. The LT cases and walk-
ins that were disabled included the ice cream cases, two bakery dessert cases, the blast chiller, 
and the bakery and kitchen freezer. The MT cases that were disabled included produce/floral 
cases/coolers and cases with nondairy drinks (soda, beer, etc.). This analysis estimated that it was 
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possible to shed 60 kW for the duration of a 4-hour DR event. However, the effect of this event 
on product temperature was not known because it is not modeled within EnergyPlus. The 
product simulator tests on the LT cases provide some insight into the warming rate on the MT 
cases without cooling. The initial warming rate for doored MT cases would probably be between 
the high and low rates and probably near the high end of 9.6°F/hr for open cases.  

This approach was a good place to start and provided an upper bound on the DR resource 
available. However, it is limited because the EnergyPlus refrigeration model is a load-based 
steady-state calculation, meaning that EnergyPlus captures the energy flows in and out of the 
refrigeration equipment and does not model the case temperatures. The refrigerated cases and all 
of the products are assumed to be maintained at a constant operating temperature. Therefore, 
typical control strategies that might be used to deliver DR cannot be realistically modeled and 
the impact on food temperatures cannot be evaluated directly in EnergyPlus.  

Gray-Box Energy Model 

New energy models for refrigerated display cases and walk-ins were developed to 
explicitly model product temperatures and allow control based on these temperatures. For the 
display case modeling efforts, the team followed the approach of O’Connell et al. (2014). This 
approach is particularly well-suited for modeling problems in which the transient variation of 
model variables is of interest, and in which a simplified approach must be taken to reduce the 
computation time required for model execution. 

For the purposes of this project, models were developed to capture important DR 
information while allowing for many model runs through a simplified model structure and 
efficient solution algorithm. A semiempirical correlation between saturated suction temperature 
(SST), saturated condensing temperature, cooling load delivered, and power input to the 
compressors is assumed. The correlation is semiempirical in that it outputs the necessary input 
power as a function of actual load on the system and Carnot coefficient of performance (COP) 
(the theoretical relationship between input power and cooling load delivered). Hasse et al. (1996) 
showed that using the Carnot COP multiplied by a modification factor that aggregates all the 
inefficiencies in the system provides acceptable predictions of necessary power at the range of 
operating conditions expected to be seen in this study. The model employed is: 

 
cooling=α *Pinput * COPCarnot =α *Pinput * [SST/(SCT-SST)] 

Where: 
cooling is the rate of energy removal from the system [kW] 

Pinput is the electrical power input into the compressors [kW] 
COPCarnot is the theoretical maximum efficiency (Carnot efficiency) 
SST is the saturated suction temperature [K] 
SCT is the saturated condensing temperature [K] 
α is the empirical modification factor. 
 

Hasse et al. (1996) used a modification factor of 0.4 and justified this assumption for SST 
values from -30°C to -10°C. Data collected by the National Renewable Energy Laboratory show 
that a modification factor of 0.38 is appropriate for an operating store. This model does not 
account for changes in the thermal mass, which may introduce inaccuracies for large changes in 
product stocked in the cases. The model proved to be accurate for this study, however. 
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Tests were conducted on a reach-in LT case and a walk-in freezer for calibrating and 
validating the gray-box models. Multiple product simulators were placed in the cases to capture 
the full range of temperature variations in the cases. In order to get a range of performance, the 
systems were excited with a pseudo-random binary signal that oscillated between a high of 
+15°F and a low of 0°F over two days. 

Statistical Analysis of Measured Data 

Energy-saving or power-modifying actions require a baseline against which the savings 
are determined. There are many approaches to constructing a statistical customer baseline load 
(CBL). One standard approach, “10 of 10 method,” accounts for time of week and averages the 
10 preceding days of data. For example, if 2 p.m. is included in a DR period, data from the 
previous 10 weekdays are averaged to provide the baseline. This is the approach used by the 
California Independent System Operator (Goldberg and Agnew 2013). 

Accounting for the impact of outdoor air temperature and outdoor dew point variations 
on power consumption can increase the baseline accuracy for HVAC and refrigeration systems. 
These factors can be accounted for using a multiple linear regression statistical model of the 
CBL based on time of week and meteorological variables and by evaluating uncertainty in the 
CBL and therefore in the modeled DR. Many buildings will have, at best, only 15-minute 
interval data from the main electrical meter. The estimated DR will have to contend with the 
statistical noise inherent in this signal. Isolating the building system or piece of equipment in 
question using strategically placed electrical submeters will reduce statistical noise. 

To establish the baseline CBL, the team used a method previously devised for a separate 
BPA-funded project. In that project, Heaney, Doebber, and Hirsch (2015) determined that a 
regression model including factors for diurnal variations and weekly variations, outdoor air 
temperature, and outdoor air dew point provided an estimate for baseline power during a DR 
event that meets or exceeds the accuracy of a 10-day rolling average.  

Demand Response Testing 

Several trials were conducted to test DR methods. These methods included various 
combinations of local and global control summarized in Table 2. The tests were done at various 
outdoor air temperatures, which affects the amount of load present and thus the amount of load 
shed available. It should be noted that some strategies are more suitable for a “day-ahead” DR 
bid, when the client has the option to do precooling, and some strategies are more likely to be 
implemented when the client has little notice before a DR event. Types of control tested include: 

 
• Precool the cases before the simulated DR event. 
• Change the DAT set point for noncritical cases. 
• Change the DAT set point for the critical case. 
• Control the compressor based on product simulator temperature rather than DAT. 
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      Table 2. Site and control parameters for each demand response test 

Test Date Precool Change 
critical case 
DAT set 
point 

Change 
noncritical 
case DAT 
set point 

DAT or 
product 
simulator (PS) 
control 

1 9/23/14 No Yes No DAT 
2 11/10/14 No Yes No PS 
3 7/14/15 No Yes No DAT 
4 7/20/15 No Yes Yes DAT 
5 7/22/15 Yes Yes Yes DAT 
6 7/24/15 Yes Yes No DAT 
7 7/28/15 No No Yes DAT 
8 7/30/15 Yes Yes Yes DAT 
9 7/31/15 Yes No No DAT 

 
The results for each of these DR tests are shown in Table 3. The load shed range in 

column 3 represents the predicted range within a 95% confidence limit. Tests 1 and 2 were 
terminated after 1 hour and 30 minutes and 1 hour and 15 minutes when the critical case (ice 
cream) air temperature reached -5°F. The highest average load shed was 9.0 kW from test 2; 
however, this was also the shortest test and had the lowest outdoor air temperature of 60.8°F. 
The second highest average load shed was 8.4 kW in test 4 over a 4-hour event with an average 
outdoor air temperature of 92°F. Test 8, shown in Figure 2, used a combination of the best 
practices from the previous tests over a 6-hour event with an average outdoor air temperature of 
105.8°F (which is very high for this area). The entire LT system including critical and noncritical 
cases and walk-ins were precooled to -12°F from 11 a.m. to 2 p.m. The team changed the float 
control of critical case (and thus the rack) from -8°F to -5°F, and changed the set points of the 
noncritical cases from 0°F to +15°F. The system maintained a drop in demand of more than 10 
kW for most of the first three hours. However, the amount of load shed dropped around 5 p.m., 
possibly due to increased customer traffic after the workday. This apparent drop in load shed 
could also be a failure of the baseline prediction to capture the increase in the load. 

 
Table 3. Demand response results for each evaluation test 

Test DR test 
time 
 

Load shed 
range 95% 
CL 
(kW) 

Ave. 
load 
shed 
(kW) 

OA temp. 
range  
(°F) 

Average 
OA temp. 
(°F) 

Average 
baseline 
load (kW) 

Average 
precool 
power add 
(kW) 

1 0830-1000 -0.4–8.0 3.8 60.8–63.7 62.3 26.2 N/A 
2 1315-1430 4.7–13.2 9.0 59.7–61.7 60.8 28.9 N/A 
3 1200-1600 -1.3–8.3 3.5 87.4–92.3 90.2 38.9 N/A 
4 1230-1630 3.2–13.6 8.4 90.0–94.3 92.2 40.6 N/A 
5 1315-1715 -1.9–9.2 3.6 71.4–75.2 73.8 32.6 7.7 
6 1330-1730 -3.3–7.6 2.1 84.9–91.4 88.0 39.2 3.5 
7 1300-1700 -3.1–6.8 1.9 87.1–92.1 89.3 38.3 N/A 
8 1400-2000 2.5–11.9 7.2 95.5–111.9 105.8 47.2 4.6 
9 1430-1830 -7.3–3.1 -2.1 104.4–108.5 106.1 46.7 5.7 
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Figure 2. Power for demand response test #8 on July 30, 2015 

Demand Response Modeling 

Multiple model structures using the gray-box approach were tested for their ability to 
predict the validation data accurately and provide the information needed for DR calculations. 
The models were first developed with the training data then validated with additional data for 
case temperature and power predictions. The best models matched the reach-in and walk-in case 
temperatures very well with root mean squared errors of 0.40°F and 0.57°F respectively over a 
24-hour period. The model was then used to predict the electrical power for the LT cases for the 
conditions during DR test 4. The comparison of the modeled and measured results is shown in 
Figure 3, with the modeled power generated knowing only outdoor conditions and set points. 
The model matched the peak demand shed during the DR event and the rebound power draw 
after the event very well, and it is conservative on the average power shed during the DR event. 
The model predicts performance well despite not including changes in the amount of product 
stocked in the cases. Large changes in product will impact performance.  

 
Figure 3. Comparison of modeled and “measured” electrical power during a demand response event 
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The calibrated and validated models were then used to estimate performance beyond the 
field tests. The model was used to predict DR availability in locations within BPA’s service 
territory on critical days with the assumption that equipment suitable for this type of operation is 
included in the store (e.g., variable capacity compressors, properly organized suction groups). 

The team assumed for all simulations that the amount of refrigeration capacity of each 
type of case was equal to that of the U.S. Department of Energy supermarket reference building 
(DOE 2015b), and that all LT cases (excluding ice cream) could be manipulated during a DR 
event. This was equivalent to changing approximately twice the capacity of cases as was done in 
the store tests. Simulations were conducted for major population centers representing geographic 
and climatic variation within BPA’s service area: Seattle, Washington; Portland, Oregon; 
Spokane, Washington; and Boise, Idaho. For DR simulations, the hottest day of 2014 was 
selected for each location (this varied by site) and compiled into a weather file used for the 
simulations. The team also ran a load-add simulation for each location with weather conditions 
from April 21, to quantify the amount of additional demand that could be added. The model 
inputs are listed below for each case and the results are shown in Table 4.  

 
Model inputs in response to a ten-minute notice: 

• Raise set points for critical (ice cream) cases and walk-ins from -8°F to -5°F. 
• Allow the SST to float up 3°F in response to the change in the critical case. 
• Raise set points for noncritical LT cases and walk-ins from 0°F to +15°F. 
• Maintain set point changes for 90 minutes. 

 
Model input in response to a day-ahead notice: 

• Schedule a 4-hour precool with all LT case and walk-in set points at -12°F.  
• Implement the set point modifications for the 10-minute notice for a period of 4 hours. 

 
To simulate added load during periods of excess supply, set points for all LT cases and walk-ins 
were lowered to -12°F from 3 a.m. to 6 a.m. 
 
Table 4. Modeled estimates of low-temperature demand response resource, rebound, and load-
add potential 

 Precool DR event Rebound 
Location Simulation Additional 

load (kW) 
Time 
(h) 

Load shed 
(kW) 

Time 
(h) 

Additional 
load (kW) 

Time 
(h) 

Seattle  10-minute NA NA 18.5 1.25 6.5 3 
Spokane 10-minute NA NA 19.5 1.5 6.8 2.75 
Portland 10-minute NA NA 15.0 1.5 5.3 2.75 
Boise 10-minute NA NA 19.8 1.5 6.8 3 
Seattle  Day-before 6.8 4 17.8 2.5 6.6 3.5 
Spokane Day-before 6.9 4 19.3 2.5 6.9 3.5 
Portland Day-before 5.5 4 15.0 3 5.5 4 
Boise Day-before 6.9 4 19.3 2.25 6.9 3.5 
Seattle  Load-add 5.4 3 N/A N/A -12.0 0.75 
Spokane Load-add 5.2 3 N/A N/A -11.2 0.75 
Portland Load-add 5.5 3 N/A N/A -12.0 0.75 
Boise Load-add 5.2 3 N/A N/A -11.5 0.75 
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Conclusions 

This study provided an estimate of the amount of power that may be shed by 
manipulating typical LT refrigeration systems in supermarkets in the northwestern United States. 
Power shedding potential was evaluated through nine store DR field tests. Additional field tests 
were performed to inform the development and calibration of a set of gray-box refrigeration 
models that allow the field-test results to be applied to supermarkets across the Pacific 
Northwest. Optimal strategies for including supermarkets in a larger portfolio of grid resources 
will likely need to include not only refrigeration systems, but also HVAC, lighting, and energy 
storage systems, as well as detailed algorithms for increasing and decreasing overall electric 
demand. Significant opportunities exist for further supermarket refrigeration DR savings; 
although additional modeling and testing is required to fully explore these opportunities. 

Specific lessons learned and recommendations: 
 

• Install EEPRs on all circuits to be used in DR programs. 
• For best results, raise the saturated suction pressure of rack(s) as well as the control set 

points of individual circuits.  
• Precooling the product may increase the amount and time of power shed available. 
• Enable floating suction control and possibly even steady-state case-level control to be 

switched between case air temperature and product simulators.  
• Implement variable capacity compressors to maintain low and predictable power 

consumption during DR events. 
• Assemble cases into suction groups that allow greater freedom. Moving the lowest-

temperature circuits (ice cream) to a dedicated refrigerant loop provides permanent 
energy efficiency in the form of a higher SST for other LT cases and allows DR strategies 
to include a larger increase in SST on non-ice cream cases. 

• Enable and test control of refrigeration lights, fans, and anti-condensate heaters to 
increase the available DR resource. 

• Two possible approaches to include MT cases in DR are to precool a secondary working 
fluid or cycle the MT compressors and/or case controls across a collection of stores to 
manage the peak demand while maintaining product temperatures, similar to the way 
utilities control residential air-conditioning units. 
 
This work is important to BPA because it provides quantifications for estimating 

potential demand response programs across the Pacific Northwest that include grocery 
refrigeration, a resource that can be centrally managed across a chain. This research, in 
combination with other research that provides similar quantifications for other grocery end uses 
(HVAC, case lighting, overhead lighting, etc.) provides a firm ground to estimate the total 
potential DR available at grocery stores. In addition, this research provides guidance for 
achieving refrigeration DR, accounting for obstacles, and identifying further research topics. 
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