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ABSTRACT 

Direct digital control (DDC) energy management and controls systems (EMCS) have 
become the standard throughout California, particularly in large office buildings. A 2012 Pacific 
Gas and Electric (PG&E) study found that 77% of large office buildings in their service territory 
utilize EMCS, a percentage likely to increase since DDC EMCS is required by California’s Title 
24 building code. DDC systems are no longer the cutting edge of energy efficiency – they are the 
new standard. So what comes next? What technology will bring efficiency beyond the 
capabilities of the current EMCS?  

One potential avenue for increased energy savings are software-as-a-service (SaaS) 
offerings that remotely optimize building energy use beyond traditional EMCS capabilities. 
These cloud-based software solutions use statistical models to predict building loads and fine 
tune HVAC equipment set points to arrive at their most efficient operating parameters. Several 
of the software providers claim that their predictive controls yield 10-40% reductions in HVAC 
energy cost compared to traditional EMCS. 

To test these claims, we conducted an independent, multi-year measurement and 
verification study of one software provider’s technology. Through measuring baseline and post-
retrofit HVAC energy consumption, outdoor air temperature, and occupant comfort conditions, 
we confirmed the potential for energy savings and investigated the impact of the predictive 
controls on building occupants. Our study also identified challenges and potential barriers to the 
technology’s implementation. The resulting case study provides useful information for utilities 
considering adopting these technologies into incentive programs, for customers considering 
implementing this technology, and for software providers to improve their offerings.  

Introduction 

California’s energy efficiency goals are among the most aggressive in the nation, driving 
customers toward new, more energy-efficient products and systems. Over the past 10 years this 
push toward efficiency has caused technologies such as variable speed drives, efficient 
fluorescent lighting, high efficiency compressors, and direct digital control (DDC) energy 
management systems (EMCS) to grow significantly in market penetration. Now, many of these 
once cutting-edge technologies have become commonplace. Indeed, California’s latest energy 
code, Title 24-2013, requires many of these technologies in new construction and renovation – 
they are the new standard (Title 24, 2013). But California’s energy efficiency goals are 
increasingly aggressive. Senate Bill 350, passed in November 2015, seeks to double the state’s 
previous energy efficiency goals by the year 2030 (SB 350, 2015). In order to meet these new 
goals, we must look to innovative new technologies that offer savings above and beyond the 
technologies of the past decade. 
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One such series of new technologies are cloud-based predictive HVAC optimization 
software packages. Vendors of these software packages typically offer a Software-as-a-Service 
(SaaS) model, with the end-user paying a monthly fee for the ongoing operation of the software. 
The software is implemented on top of an existing DDC EMCS and takes control of HVAC 
operational set points. While a traditional EMCS tries to optimize system operations based on 
real-time operating conditions, these predictive software packages are designed to optimize set 
points based not only on real-time data, but also on the predicted thermal conditions in the 
building throughout the day. The vendors of these cloud-based controls packages claim they can 
reduce a customer’s annual HVAC energy consumption by 10% to 40% by adjusting set points 
pre-emptively based on the predicted upcoming operation of the building.  

Each software vendor claims to have a unique algorithm that achieves optimal savings. 
Unfortunately, since the control strategies are the primary differentiators between these 
companies’ offerings, the algorithms are often proprietary. As a result, many in the energy 
efficiency industry regard these predictive software packages as the quintessential ‘black box’ – 
a technology that promises results but offers very little insight in to how it works. Customers 
may be hesitant to adopt these products because it is not obvious how they reduce energy use, it 
is difficult to differentiate between alternate product offerings, and there are few independent 
third party evaluations that validate the claimed savings. Similarly, in the early 2000’s, 
companies selling black box ‘power conditioning’ devices promised customers energy savings 
via improved power quality, while providing very little insight or data on how energy was saved. 
While some of these power conditioning devices did work, enough customers were duped by 
savvy marketing that Pacific Gas and Electric (PG&E), Northern California’s primary Investor-
Owned Utility (IOU), published a warning for its customers encouraging them to highly 
scrutinize these technologies before making any financial commitments (PG&E, 2004).  

This is not to say that all ‘black box’ technologies are bad. The creators of these 
predictive HVAC controls have every right to keep their algorithms private, and their savings 
claims may very well be legitimate. If this is the case, then these technologies represent a 
significant opportunity to further reduce building HVAC energy consumption in buildings that 
already operate with a DDC EMCS. The significance of this opportunity is supported by both the 
prevalence of EMCS technologies in existing buildings, and the large percentage of building 
energy consumption associated with HVAC equipment. Based on a 2012 study conducted by 
PG&E, 69% of large commercial buildings in their territory use an energy management system. 
The same study identifies an even greater presence in large office buildings, with a 77% 
penetration (Pande, 2012). In California, HVAC accounts for approximately 40% of electrical 
energy in large office buildings (Itron, 2006). Therefore, even an incremental reduction in 
HVAC usage due to improved EMCS control, if implemented broadly, could yield a significant 
reduction in overall state-wide building energy consumption.  

Due to the industry’s limited understanding of how cloud-based predictive HVAC 
controls work, objective assessments of these technologies will be crucial to improving 
consumer confidence and achieving the significant state-wide savings potential that these 
technologies have. To test the claims of one such technology, kW Engineering conducted a 
multi-year measurement and verification (M&V) case study through San Diego Gas and 
Electric’s (SDG&E) Emerging Technologies (ET) program. This study represented an 
incremental but important step toward determining whether or not cloud-based predictive HVAC 
controls could yield reliable savings above and beyond today’s energy efficiency standards.   
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Technology Description 

The following technology description represents the vendor’s own claims about the 
energy-saving capabilities of the product that kW Engineering and SDG&E reviewed. The 
technology is a cloud-based SaaS platform that offers customers energy savings and demand 
response capabilities beyond what their existing EMCS can provide. This SaaS platform 
communicates directly with the existing EMCS, allowing it to take control of HVAC operational 
inputs without additional sensors or hardware.  

According to the vendor, the software collects numerous data points over time including 
occupancy schedules, HVAC or whole building power consumption, and outdoor air 
temperature. The software uses these inputs to develop a multi-variable regression model of the 
building’s thermal loads, as well as a baseline model of the building that predicts HVAC power 
consumption for each hour of the year. Based on the thermal model, the software tests various 
HVAC control strategies for the upcoming 24 hour period in order to find the control approach 
that saves the most energy compared to the baseline model. The software continually updates the 
building thermal model every two hours and further refines the HVAC control approach based 
on the updated real-time data.  

The following examples illustrate how the software uses predictive models to optimize 
HVAC operations: 

 
• The building space temperature is modulated within a predetermined comfort range; 

usually between 70 °F and 74 °F. By modulating space temperature, rather than operating 
at a fixed set point, the software can shift HVAC power consumption to times of day 
when compressor efficiency is greater and energy costs are lower. On a day that the 
software predicts will have a warm afternoon, the building is pre-cooled in the morning 
and internal temperatures are allowed to ‘float’ upward in the afternoon. In theory, this 
results in an overall reduction in HVAC energy consumption because the HVAC systems 
operate more efficiently during the cool morning than they would in the midday heat. 
Additionally, the load is shifted away from peak hours when energy prices and grid 
demand are highest.  

• The software optimizes economizer operation in a similar fashion. If the software 
predicts that a warm afternoon is approaching, but free cooling is available in the 
morning, then the software will maximize the free cooling capability by dropping the 
space temperature set point in the morning and brings in as much cool outdoor air as 
possible to pre-cool the space. Alternatively, if the software predicts a cooler afternoon 
approaching, then it limits free cooling in the morning, maintains a higher space 
temperature, and limits the reheating required to meet the afternoon heating load.  

• The software communicates directly with utility AutoDR servers1 to automatically enact 
demand response measures that are optimized based on the predicted building thermal 
conditions. Using the predictive model, the software tests numerous demand response 
scenarios in order to find the approach that will yield the highest demand reduction 
without impacting occupant comfort. A standard EMCS typically responds to a DR signal 
by adjusting HVAC set points using assumed temperature and load profiles based on a 

                                                 
1 To participate in California’s Automated Demand Response (AutoDR) incentive programs, building owners must 
employ controls that automatically initiate pre-programmed demand response strategies in response to signals sent 
from utility servers.  
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design-day model of the building. The predictive software, on the other hand, uses real-
time data to fine-tune the scale and timing of the temperature adjustments based on the 
specific space cooling loads of that day.  
 
In addition to the control functions performed automatically by the software, the software 

vendor provides on-call support to facilities staff and some basic remote fault detection 
capabilities. This component of the offering is as crucial as the energy-saving algorithms. 
Facility operators often do not like outside sources controlling their systems, which is 
specifically what these software packages are designed to do. Without communication channels, 
facilities staff would likely disable or bypass the system if an issue arose, rather than working 
through the issue via on-call support. Therefore, having direct communication between the 
software vendor and facilities staff is an important component in ensuring that whatever savings 
the software delivers are able to persist over the long term.  

Case Study  

To test the vendor’s savings claims, as described in the section above, kW Engineering 
conducted a two-year M&V study from May 2013 to August 2015 in a large office building in 
San Diego, California. 

 
Baseline Building Description 

 
The test building was 6 floors, 144,000 conditioned square feet, and was built in 2001. 

The HVAC equipment included three 65-ton and three 72-ton Trane Intellipak packaged VAV 
air handling units. Each unit was equipped with a VFD-controlled supply fan, water-side 
economizers, water-cooled DX compressors for cooling, and hot water coils for pre-heating. The 
DX compressors were on a common condenser water loop served by a rooftop cooling tower that 
operates with a VFD-controlled fan. Hot water was generated by a rooftop boiler that used VFD-
controlled pumps to deliver hot water to the air handling units and to perimeter VAV boxes for 
additional zone-level heating. Prior to installing the predictive HVAC controls, the building’s 
JCI Metasys DDC system had full control of all HVAC operations and set points. This EMCS 
controlled HVAC scheduling, modulated fan and pump VFD speeds to maintain constant 
pressure set points, operated a supply air temperature (SAT) reset based on internal building 
loads, staged compressors to maintain SAT set point, and implemented water-side 
economization. The control strategies operating in this building are consistent with many other 
large office buildings throughout the state, and meet many of California’s Title 24-2013 new 
building design standards.  

Project Goals 

kW Engineering and SDG&E designed the M&V case study to quantify the impact of 
predictive HVAC control software in the following areas of interest: 

 
• Average annual reduction in the building’s electrical energy consumption during a typical 

meteorological year (TMY).  
• Demand reduction potential and ability to communicate automatically with utility 

demand response automation servers (DRAS).  
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• Impact on occupant comfort during a demand response event and throughout a typical 
year.  

• Interaction with on-site facilities staff.  
 
We established these areas of interest to directly test the vendor’s energy savings claims, 

to investigate the non-energy impacts of the software, and to determine the potential benefits and 
barriers to adopting the technology on a wider scale. The following sections describe the 
approach used to test the equipment, the results of the testing, and the conclusions that can be 
drawn from the assessment.  

Testing Approach 

To test the impacts of the predictive control software, kW Engineering conducted an 
M&V study that applied the International Performance Measurement and Verification Protocol 
(IPMVP) “Option B: Retrofit Isolation” approach. This approach required measurement of all 
sub-systems within the building that were directly affected by the investigated technology, in 
order to confirm the energy savings within a reasonable margin of error. We applied this M&V 
approach to the areas of interest listed above as follows: 

 
Average Annual Electrical Energy Reduction  
 

To quantify the average annual reduction in electric consumption, we monitored the 
power of all HVAC systems (air-side and water-side) in 15-minute intervals for 18 months prior 
to the software installation and 10 months following the installation. We collected these power 
readings from the utility-grade meter that is dedicated solely to the HVAC equipment throughout 
the building. We measured power and current from individual sub-systems as well to confirm 
that the meter-level power readings were reasonable.  

We used the collected power data, outdoor air temperature data from a local NOAA 
weather station, and building occupancy profiles to develop a multi-variable regression analysis 
that models the baseline and post-retrofit annual HVAC power consumption. To develop the 
regression, we used the statistical computing software ‘R,’ and applied the regression technique 
described in LBNL-4944E, an April 2011 article from Lawrence Berkeley National Labs that 
outlines recommended procedures for quantifying changes in building electricity use (Mathieu et 
al., 2011). To apply this calculation approach, which is too extensive to describe in full herein, 
our first step was to model building electric load as a function of outdoor air temperature, 
occupancy status, and time-of-week. To develop this portion of the model, we divided the week 
into 60-minute time intervals (other intervals can be used). For each interval, we calculated an 
individual baseload. This baseload depends only on time, not on outdoor air temperature or 
occupancy. In addition to the baseload, we calculated several temperature-based load 
components. To determine the temperature-based load, we applied a simple linear outside air 
temperature function to model the building’s unoccupied operation; and a piecewise linear 
outside air temperature function using six equally-sized segments to model the temperature-
based load while the building is occupied. To determine the total load for a given time, we 
summed the temperature-based loads, occupancy-dependent loads, and the baseload for all given 
time, occupancy, and weather conditions. As a result there are 175 components calculated during 
the regression: 168 for the time-of-week factor, 6 for the occupied piecewise linear outside air 
temperature function, and 1 for the unoccupied temperature function. 
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To calculate energy savings over a full typical year, we applied local TMY-3 weather to 
both the baseline and post-retrofit regression models in order to calculate yearly, adjusted 
baseline and proposed demand profiles. 

The regression model’s accuracy depended on having sufficient data to cover all outdoor 
air temperature ranges, so long-term monitoring was required. It was also imperative that no 
changes to the building operations, other than the change being measured (in this case, the 
implementation of a cloud-based control software), occurred between the baseline and post-
retrofit data collection periods. This was essential in order to provide an ‘apples-to-apples’ 
comparison of the baseline and post-retrofit data. To this end, we culled the data set to eliminate 
any baseline data that was not representative of the building’s loads throughout the monitoring 
period. For example, the building’s facilities staff informed us that floor #5 became unoccupied 
at the end of 2013, during our baseline monitoring period, and continued to be unoccupied 
through the post-retrofit M&V period. Therefore, we removed all 2013 data from the baseline 
analysis to provide a like-for-like comparison between the baseline and post-retrofit cases.  

We assessed the fit of our baseline and post-retrofit models based on the R-squared value 
and the coefficient of variation of the root mean squared error [CV(RMSE)], as listed below.  

 
Baseline Regression Model: CV(RSME) = 18.3%; R-squared = 0.954 
Post-Retrofit Regression Model: CV(RSME) = 19.5%; R-squared = 0.952 
 
Figure 1, below, graphically illustrates how accurately the regression model predicts 

baseline power consumption both during the occupied and unoccupied periods.  

 
Figure 1. Data sample from baseline trending period comparing measured HVAC power consumption over time 

(blue line) compared to the regression model’s predicted power consumption (orange line) 

The R-squared, CV(RSME), and graphical examples indicate that the baseline and post-
retrofit models were a reasonable fit to the collected monitoring data. Since we calculated energy 
savings as the difference between the baseline and post-retrofit energy use, the uncertainty of the 
savings claim is affected by the accuracy of both the baseline and post-retrofit models. To  
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validate the savings claims, we compared the uncertainty of the calculated savings to the widely-
used standards in ASHRAE Guideline 14. This uncertainty assessment is presented in the Test 
Results section below.  

 
Demand Reduction Potential 
 

To measure the demand reduction, we conducted a 2-hour demand response test and a 4-
hour demand response test, during which we simulated a DR event signal from SDG&E’s DRAS 
server2, then tracked the resulting change in building demand. To measure the savings, we first 
established a baseline demand profile using a 10-day average baseline with “day-of” adjustment. 
This approach was consistent with the method that the California Investor Owned Utilities 
(IOUs) use to calculate savings for their DR incentive programs, and has been vetted by the 
California Public Utilities Commission (SCE, 2013). This method required 15-minute interval 
data from the HVAC meter to determine the hourly average load profile from the 10 business 
days prior to each demand response event. Using this interval data we calculated the average 
baseline demand for each hour, then applied the “day-of” adjustment ratio. To determine this 
ratio, we calculated the average kWh usage of the first three of the four hours before each DR 
event, and divided this value by the average kWh usage for the same three hours from the 10 
days prior to the event. This adjustment factor was designed to account for changes in weather 
patterns or building operating conditions during the day of the event compared to the previous 10 
days. The result was a baseline load profile that predicts the hour-by-hour HVAC power 
consumption for the demand response day, without any DR procedures in place. The difference 
between the predicted power consumption and the actual measured HVAC consumption 
measured during the DR event is equivalent to the demand response load shed. 
 
Building Occupant Comfort Assessment 
 

Though the exact control methodology of the studied software is proprietary, the vendor 
stated that their control logic makes set point adjustments that affect both the supply air 
temperature and airflows in order to achieve both energy and demand response savings. Despite 
adjusting these set points, the manufacturer claims that their software does not significantly 
impact occupant comfort. We identified occupant comfort as a critical aspect of this case study, 
because in order for an HVAC control technology to provide persistent energy savings over time 
(i.e., is not decommissioned, or overridden by site staff due to occupant complaints), the 
occupants must remain comfortable.  

For the purposes of this study, we defined ‘occupant comfort’ quantitatively as 
maintaining space temperature and relative humidity within acceptable ranges, as defined by 
ASHRAE Standard 55-2013. To determine if the internal conditions were comfortable, we 
measured space temperature and relative humidity inside one open office area on each floor 
during both the pre-retrofit and post-retrofit monitoring periods. We placed sensors away from 
exterior walls and from supply air registers in order to track average conditions in the room as 
closely as possible. We also assessed occupant comfort qualitatively by asking the building’s 
facilities director to track hot or cold calls from the tenants and identify if there was any marked 
increase in tenant complaints after the software was implemented.  

                                                 
2 The Demand Response Automation Server (DRAS) automatically sends a signal to the building on demand 
response days in order to initiate the building’s pre-programmed DR control sequences.  
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Facilities Staff Interaction 
 

To determine the facilities staff’s overall opinion of the studied software and the remote 
management services the vendor provided, we interviewed facilities staff regarding and how they 
interacted with the software on a daily basis. Interview questions primarily sought to determine 
whether the software was a burden or benefit to on-site staff and their day-to-day workload.  

Test Results 

 The result of the multi-year M&V investigation revealed that the software did achieve 
verifiable annual electrical energy savings, was capable of implementing automated demand 
response to achieve meter-level demand shed, and achieved both of these goals without 
significantly impacting occupant comfort. The following sections summarize the data and 
analyses that led to these results.  
 
Annual Electricity Reduction Results 
 
 Based on the results of the multi-variable regression analysis, we determined that the 
building’s average annual HVAC electrical energy consumption dropped by 10.7% as a direct 
result of the new cloud-based EMCS controls. The project goals required that the uncertainty 
meet ASHRAE Guideline 14 standards, which states that the uncertainty shall be less than 50% 
of the reported annual savings (ASHRAE, 2014). We calculated an uncertainty of 4.4% at 68% 
confidence, which per ASHRAE Guideline 14 standards, indicated that the savings estimates 
were within a reasonable margin of error. Figure 2 illustrates the average reduction in total 
HVAC energy consumption across all observed load ranges during the two-year testing period.  

 
Figure 2. Graph of baseline and post-retrofit average weekday HVAC power consumption data 
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Demand Response Results 
 

The 2-hour DR test yielded an average 8% reduction in HVAC equipment demand, while 
the 4-hour DR test yielded an average 4% demand reduction. Figure 3 illustrates the average 
hourly HVAC power consumption during the 4-hour DR test, as well as the unadjusted and 
adjusted baselines used in the 10-day average baseline with “day-of” adjustment demand 
reduction analysis.  

 
Figure 3. Measured data and baseline data from 4-hour DR test, conducted on July 22, 2015 

The graph shows a clear demand reduction from the adjusted baseline, but also shows 
that the reduction varies significantly throughout the demand response period.  
 
Occupant Comfort Results 
 

We compiled and graphically analyzed the space temperature and relative humidity data 
that we collected from each floor. The data showed that baseline and post-retrofit space 
temperature varied from -0.6 °F to +1.3 °F of the space temperature set point. The accuracy of 
the temperature sensors was +/- 0.63 °F, and therefore the total uncertainty in the temperature 
measurements was +/- 1.26 °F. The maximum temperature increase we observed was only 0.04 
°F greater than the measurement uncertainty, indicating no significant change in space 
temperature after the software was installed. Additionally, we found the humidity ratio to be 
constant at 0.010 +/- 0.001 throughout the monitoring period. ASHRAE Standard 55-2013 states 
that the temperature can range from 67 °F to 82 °F and humidity ratio must be maintained at or 
below 0.012 to maintain occupant comfort (ASHRAE, 2013). 

Figure 4 and Figure 5 show the average indoor space temperature and humidity readings 
throughout both the baseline and post-retrofit monitoring periods.  
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Figure 4. Average of weekday interior space temperatures from baseline and post-retrofit monitoring periods  

 

Figure 5. Average of monitored weekday relative humidity and humidity ratio from baseline and post-retrofit 
monitoring periods  

The data also indicated that the building remained within the comfortable temperature 
and humidity ranges throughout the DR testing as well. Furthermore, the on-site facilities staff 
who field tenant hot and cold calls confirmed that there had been no increase in the frequency of 
tenant complaints after implementation of the software.  
 
Facilities Staff Interaction Results 
 

During the interviews we conducted with facilities staff after the post-retrofit M&V 
period, their overall opinion of the software and the services provided by the vendor was high. 
No staff indicated any increase in their workload due to implementation of the software. The 
director of facilities stated that he had used the on-call technical support service on a few 
occasions to report hot or cold calls from his tenants, and that the software provider addressed 
these issues within a reasonable timeframe. He noted that the software vendor had alerted him of 
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a number of potential operational issues using their fault detection as well. Furthermore, at no 
point during the testing period did facilities staff disable the predictive control system due to 
operational concerns, though some internet connectivity issues did result in communication 
problems with the cloud server at times. Overall, the facilities staff agreed that the software did 
not impinge on their ability to work in an efficient manner, and stated that overall they found it 
an improvement in the operation of their building.  

Cost-Effectiveness 

To assess the market readiness for widespread implementation of the predictive controls, 
we calculated the project payback and compared the payback period to the expected useful life of 
the software. In this particular application, we calculated that the customer’s simple payback was 
6.5 years before incentives, and 4.8 years with assumed utility incentives (calculated assuming 
the technology was incentivized through existing SDG&E customized incentive programs). The 
typical contract period for the software is 5 years, after which point additional payments to the 
software vendor would be required. Therefore, for this particular building, the utility incentive 
was necessary in order to bring the payback within the terms of the initial service agreement 
(SDG&E, 2015). These incentive programs, which had a state-wide budget of $1.7 billion in 
2014 (DOE: 2015), provide significant funding for customers to install new, cutting-edge 
technologies. As such, these programs are major drivers for change in the industry, and push the 
state closer to its lofty efficiency goals. Our case study confirmed that this software could 
achieve verifiable energy savings, and the simple payback assessment indicated that utility 
incentives could be critical to bringing the project cost-effectiveness in line with customer goals. 
However, the long-term M&V required to verify the savings still remains a potential barrier to 
incorporating these technologies into custom incentive programs. Until then, pay-for-
performance programs are likely the most effective method of incentivizing this technology.  

Conclusions 

The results of our case study conclusively showed that this particular cloud-based 
predictive HVAC control software successfully reduced the building’s annual HVAC electricity 
consumption within the vendor’s predicted range, reduced peak demand in response to a DR 
signal from the utility’s automated server, and achieved these goals without significantly 
impacting occupant comfort. These results are significant as they represent the first independent, 
data-based verification of one such technology’s saving potential.  

These results are not enough, however, to make broad-ranging claims about the 
technology’s savings potential in other applications. The software’s energy savings and demand 
response potential could vary dramatically based on building operating profile, HVAC system 
types, building types, and climate zones. For example, this technology relies on predictions of 
upcoming building operations in order to determine the most efficient HVAC control approach. 
Therefore, the software may yield less favorable energy savings in a building with non-standard 
or sporadic occupancy profiles, as the load is harder to predict. Conversely, the software could 
achieve greater energy savings than we observed in this project if the existing building systems 
had differed. For example, the investigated software’s control algorithms claim to optimize air-
side economizer functions, but the studied building was only operating water-side economizers. 
Therefore, no savings from air-side economizer control improvements could be realized.  
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Furthermore, we do not have enough data from this initial case study to determine 
whether one company’s predictive software is favorable to another’s. When the power 
conditioning ‘black box’ devices became popular in the early 2000’s, some of the technologies 
yielded legitimate energy savings, while others were ineffective or even detrimental to a 
building’s power consumption. The same may be true of the different cloud-based predictive 
HVAC control technologies that are emerging on the market today.  

To evaluate the performance of this software across a wider range of applications, and to 
test the capabilities of multiple software vendors, we recommend that vendors, utilities, or other 
interested parties commission additional independent case studies. The data from these additional 
case studies could then be aggregated to identify trends in what building types yield the greatest 
savings, and which particular software providers yield the most reliable, positive results.  

Despite the above caveats, we know from this test that the software achieved energy 
savings beyond what the existing EMCS had provided, that these savings persisted over time, 
and that we could conclusively measure the savings. We believe that this initial study 
demonstrates the potential for cloud-based predictive HVAC controls to significantly improve 
HVAC efficiency in buildings with existing EMCS systems. Once fully tested, vetted, and 
accepted on a more widespread basis, we expect that these predictive controls will play a major 
role in driving the state toward its 2030 efficiency goals and beyond.  
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