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ABSTRACT 

 Energy storage has long been a part of many utilities’ energy procurement strategies. 
However, unlike a typical power plant where power is produced at the same time it is consumed, 
energy storage facilities take in energy when there is a lull in demand and then discharge that 
energy when demand is high. While worldwide grid connected energy storage capacity is 
currently fairly small, it is poised to grow quickly over the coming decade. Information Handling 
Services (IHS) recently predicted that energy storage capacity would grow from 340 MW in 
2013 to 6 GW in 2017 and exceed 40 GW by 2022 (Wilkinson, 2014) – a compound growth rate 
over 70%. There are a number of technologies available to meet this expected growth, such as 
pumped hydro and thermal storage, but the one technology receiving the most attention recently 
is electro chemical, or battery, storage. In addition, there has been a growing trend of deploying 
storage ‘behind the meter’ in customers’ homes and buildings. With this shift, however, the 
perspective of the benefits and costs suddenly shift from the utility to the customer, who will 
want to use the batteries to maximize their benefit. However, with this change in perspective 
comes new challenges such as noisier load profiles and lower accuracy load forecasts that prove 
a challenge to systems trying to maximize demand reduction. This paper explores setting up a 
multivariate regression model for a building and then builds discharge strategies that can be 
utilized to maximize return on available battery storage. 

 Introduction  

Spurred by the automotive industry’s adoption of hybrid and fully electric cars, 
considerable research has been dedicated to making batteries smaller, lighter, cheaper, and 
capable of storing more energy. This has resulted in, approximately, a 6% improvement in 
energy density per year as old chemistries are reformulated and new chemistries are discovered 
and commercialized (Anderson, 2009). Currently, lithium-ion batteries are the leader in market 
share, but new chemistries, such as lithium-sulphur and lithium-oxygen, are in development that 
may offer much higher energy densities than those available today (Van Noorden, 2014). 

 When it comes to the energy industry, batteries are hardly a new thing. However, only 
recently has interest in building scale, rather than utility scale, solutions really started to take 
hold in the minds of consumers and investors. With Tesla beginning to sell, and immediately sell 
out, of 3.3 and 6.4 kWh home-scale batteries and development continuing on 100 kWh 
commercial-sized ‘powerpacks’ capable of scaling ‘infinitely’, battery storage is beginning to 
come to the forefront (Tesla, 2016). With this shift, however, incentives and conditions are 
suddenly changing. From an operational perspective, the owner of the battery is no longer as 
concerned with things such as reserve capacity or grid stability. The primary concern is 
extracting as much financial value from the battery as possible before it begins to degrade. 
Likewise, the battery management system must become much smarter as the deployment 
strategy no longer has a nice, steady demand curve to work with but must now, instead, deal with 
a potentially erratic load as various pieces of equipment at the site cycles on and off. 
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The following figure best illustrates this concept. The figure shows three load profiles for 
what should, in theory, be the hardest day of the year for a utility: the annual peak day. In this 
case, for the California Independent System Operator (CAISO), that day occurred on September 
15th, 2014 where total demand peaked at over 45 GW of instantaneous power (CAISO 2016). 
The three load profiles shown are that of the CAISO, Pacific Gas & Electric’s (PG&E) service 
territory (covering most of northern and central California), and the building of interest, which 
will be discussed below: 

 

Figure 1. CAISO, PG&E, and Building Peak Day Profiles 

 The graph illustrates the concept core to the paper: as the scope of usage increases, the 
load profile tends to be smoother as customer load profiles average together and random effects 
within one location cancel out random effects in another location. This makes for easier 
deployment scheduling as demand is more predictable. However, with building level storage, 
this comfort is taken away and the model must then deal with a load profile that will tend to be 
much noisier than a model can compensate for. This is critically important as demand charges 
are a ratchet charge: once a value is exceeded, the charge is set for that month. Therefore, the 
model must leave room for forecasting error as getting things wrong once potentially negates 
savings for the entire month. 

The Building 

 When beginning any modeling exercise, it’s generally best to establish what data are 
wanted, what data are needed, and what data are available. Rarely do the three overlap. For this 
exercise, the data that ended up being used was a surprisingly short list: 

• Interval Data 
• Hourly weather data 
• Tariff Data 

These three pieces of data gave enough information to bootstrap the model and begin 
development. Along the way, different abstractions of this data (such as cooling degree days) 
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were added and any inconsistencies within the data were smoothed out1. Once suitable datasets 
were located, the modeling process began and the three options discussed below were developed. 
However, first, a brief discussion of the data used: 

Interval Data 

 The interval data was the first piece of data that was sought out. This ended up being the 
most difficult part as the data had to be publicly available and of a long enough duration to 
model a full year. Thankfully, Lawrence Berkeley National Lab published (OpenEI 2015) the 
electric (and gas) interval data for their Building 74 – a 45,382 square foot LEED Platinum 
research facility. This facility has a fairly normal load profile: a morning ramp to a midday peak 
to an evening ramp to a lull in demand overnight. The interval data itself was fairly high quality 
15 minute interval data. The data provided covered the entirety of 2014 and the first half of 2015. 
The analysis and modeling period selected was calendar 2014. 

Weather Data 

 Once the interval data and, thus, the location of the facility was established, the next step 
involved getting the weather data for the facility. For that, NOAA’s National Climatic Data 
Center (NCDC) was utilized. This service provides historical weather data for various weather 
stations around the globe. For the facility, Downtown Oakland2 was selected as the closest 
location to pull weather data from. In a real world scenario, a building would likely be able to 
utilize its own historical weather data to improve results. 

 The data received from NCDC was found to be of high quality – NOAA puts the data 
through various screens and the flags any erroneous results so they can be eliminated. Since the 
data is fairly raw, however, some additional modeling work was required to align it with the 
interval data. Specifically, since the reads weren’t aligned on the hour, they had to be prorated 
for each affected hour and then summed to provide a weighted-average temperature for any 
given hour in the analysis year (2014). 

Tariff Data 

 Finally, the last piece of the puzzle developed was modeling an appropriate tariff for the 
building. With a maximum demand in 2014 of 236 kW, PG&E’s Medium General Demand-
Metered Service (A-10) tariff was selected. When performing economic analysis of the battery, 
care was taken to make sure that the rules within the tariff were followed (Peak vs. Part-Peak, 
etc.) and that the appropriate values, such as Maximum Demand, were captured for each billing 
cycle. For ease of modeling, bills were assumed to cover from the first to the last of the month. 
All of the methodologies support different read cycles, however. Table 1 contains the results of 
the tariff analysis and lays out the base case for the building. 

 

 

                                                            
1 Most of the smoothing out involved missed intervals that were caught up at the next reading (e.g. 25, 25, 0, 50…). 
In these instances, the average value was applied to all missing intervals. 
2 While it’d be best to use the weather observed at the building, this station was selected as the closest 
geographically to the building of interest. 
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Table 1. Tariff Analysis for Building 74 

Month 
Usage Cost 

kWh kW Energy Demand Total 
January 86,371 179 $10,433 $1,871 $12,304 
February 77,722 171 $9,391 $1,792 $11,183 
March 85,800 184 $10,369 $1,929 $12,299 
April 87,558 223 $10,635 $2,340 $12,975 
May 92,365 228 $14,402 $4,065 $18,467 
June 90,544 217 $14,116 $3,876 $17,992 
July 93,670 226 $14,682 $4,036 $18,719 
August 91,636 216 $14,288 $3,858 $18,146 
September 94,511 236 $14,824 $4,211 $19,034 
October 99,210 233 $15,607 $4,152 $19,759 
November 88,424 189 $10,612 $1,979 $12,591 
December 85,180 170 $10,298 $1,782 $12,079 
Total 1,072,990 236 $149,656 $35,890 $185,546 

 

Battery Data 

All of the models assume a 100 kWh battery pack capable of discharging at 25 kW3. 
Roundtrip efficiency is assumed to be 92% (market claims run between 85% and 96%). No 
assumption was made for standby losses, which are assumed to be negligible within a day and 
there was no value in attempting to preserve the battery by not running it on weekends or 
holidays or where a new peak was unlikely to occur. 

Finally, once all of the pieces of data were assembled, the last thing done before creating 
the deployment strategies was to model the building’s energy consumption. As previously 
mentioned trying to model a specific location proves to be more difficult than modeling a system 
(CAISO’s or PG&E’s) as a whole. Any random disturbance at the site (say a fan or rooftop unit 
turning on ahead of what is predicted) would cause a jump in usage that is hard to capture via a 
regression model. Figure 2 shows how utilizing a few pieces of data such as weather, day of 
week, and hour can produce strong predictive power. However, since no model is perfect, we 
must accept that it will occasionally be wrong from time-to-time. For example, even though the 
grid model has predictive power of 92%, it still misses the peak day by over 10% of the total. As 
is illustrated later, this is not a fatal flaw for the model but, as with most things, is something to 
work around. 

                                                            
3 Roughly equivalent to one Tesla PowerPack of 100 kWh which can provide continuous discharge 4 hours. 
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Figure 2. CAISO Actual vs. Predicted Load 

 As mentioned previously, formulating a comprehensive model for a building is more 
difficult as there are many more variables than can be captured at the ’30,000 foot level’. 
However, only utilizing the following data, we are able to explain 82% of the observed energy 
usage: temperature, cooling degree hours, a month flag, a weekday flag, a holiday flag, the 
maximum demand for the month, whether or not the building is open (presumed operating 
hours), and an accumulator for that day’s cooling degree hours. Using the same date range as the 
CAISO (system peak week) produces: 

 
Figure 3. Actual vs. Predicted Building Load 

 While the system did a fairly good job of predicting the overall shape of the load on 3 out 
of 7 days and correctly picked up a higher-than-usual overnight load between days 4 and 5, the 
system did miss the overall peak. Model 3 attempts to accommodate this issue by calculating the 
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standard deviation of the estimate and allowing the user to select a risk threshold that the system 
then guards against.  

Model 1: Trigger Based 

Perhaps the most simplistic model to begin with when developing a battery deployment 
strategy is that of a trigger based approach – for example, ‘If the kW load in the building is less 
than the current maximum demand for the month and it’s an off peak hour then charge the 
battery’. This methodology defines a series of rules about when to charge and then discharge the 
battery. While this approach is quick to develop and deploy, there are some drawbacks: if the 
rules aren’t setup correctly, the battery may discharge itself preventing peaks before the hottest 
parts of the day when demand is likely to be highest, potentially negating any savings other than 
the off-peak to peak energy arbitrage. Likewise, charging the battery must be carefully set up as 
it does the owner no good to charge the battery during off-peak hours if that’s also the time of 
maximum demand. The tables below provide a brief synopsis of a trigger based approach’s rules 
and results for the building: 

• Charging: Between 2am and 8am (Off Peak), attempt to charge the battery until it is full. 
Do not set a new maximum peak4. If we’re in partial peak or on peak hours, demand is 
less than the current maximum demand, and the battery isn’t full, attempt to charge it5. 

• Discharging: If the building is about to set a new peak, attempt to discharge the battery to 
push the peak down to the last maximum with the constraint that the battery can only 
discharge so much energy in a 15 minute interval. If the battery does not have sufficient 
energy, then completely discharge it. If we’re approaching the end of the day (Off-peak 
transition) and the battery will need to discharge at its maximum rate in order to reach 0 
kWh by the transition, begin discharging. 

The following graph depicts the results of running the model during the week of the 
building’s annual peak. Entering the week, the building had a peak of 166 kW. The first two days 
were a Sunday and holiday (Labor Day), which lowered load. Business resumed Tuesday and the 
following day, Wednesday, was when the building set its annual peak at 236 kW at 2:45pm. 
Because the model is not forward looking, the battery ended up trying to defend a maximum 
peak that was not going to stand. While the battery successfully reduced billed demand by 25 
kW for the annual peak, it ended up failing to do so in 4 out of 12 months (see Table 2). There 
are some improvements that could be made to this model to eke out more savings by discharging 
the battery during on-peak hours, though that runs the risk of not having energy available for a 
late evening peak. 

                                                            
4 The model was allowed to charge up to 145 kW total demand, even if that month’s demand was lower. This 
avoided issues where the meter had just been read and the maximum demand at the beginning of the month was very 
low during the first day. 
5 There is no arbitrage opportunity at this point (buy on peak, sell on peak), but it does keep the battery available in 
case demand surges later in the day. In this scenario, on peak charging increased energy costs by $19 but reduced 
demand by $103, a net savings. 
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Figure 4. Trigger Based Model: Peak Week 

 Billing analysis shows a savings of over $4,000 in one year for the battery, which went 
through 365 cycles - most batteries are rated for 2,000-5,000 cycles before degrading to 80% 
capacity (Shahan 2015). While $3,800 came from demand savings, there was also energy cost 
savings even though overall energy usage was higher as the battery, essentially, arbitraged 
between off-peak and partial peak/on peak prices. At a cost of $250/kWh, or $25,000 for our 
assumed battery, this would provide for a simple payback period of just over 6 years, longer if 
there are associated maintenance or operational costs (NRECA 2015). 

 Table 2: Model 1 Savings Results 

Month 
Usage Cost 

kWh kW Energy Demand Total 
January 86,645 154 $10,431 $1,609 $12,040
February 77,980 146 $9,390 $1,531 $10,920
March 86,075 159 $10,367 $1,668 $12,035
April 87,823 198 $10,630 $3,541 $14,171
May 92,637 211 $14,355 $3,771 $18,126
June 90,810 192 $14,059 $3,430 $17,489
July 93,948 201 $14,618 $3,590 $18,209
August 91,908 200 $14,241 $3,563 $17,804
September 94,780 211 $14,768 $3,765 $18,533
October 99,482 210 $15,548 $2,198 $17,745
November 88,686 182 $10,613 $1,906 $12,519
December 85,459 145 $10,294 $1,520 $11,814
Total 1,076,232 211 $149,314 $32,090 $181,403
Savings (3,243) 25 342 $3,801 $4,143
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Model 2: The Predictive Model 

The next evolution in the model was to incorporate a forward looking aspect to the 
decision to deploy the battery storage. While the trigger model does a fine job of responding to 
the building as-is, there were several occasions where, early on in the month, the battery would 
deploy trying to preserve a peak that would be easily surpassed later in the day, no matter what 
the battery did. If we look at the battery’s performance on November 5th, 2014, there is a clear 
problem: 

 
Figure 5: Model 1 and 2 Comparison for 11/05/2014 

 Entering the day, the building’s maximum kW load for the month was 145 kW, which the 
trigger based model attempted to defend from interval 37 to 61. However, by interval 62, the 
battery had depleted and was unable to deploy, which reset the maximum demand higher, to 182 
kW (which explains the recharge in intervals 63-70). So, the predictive model added an 
additional rule to the mix: 

• Discharging: If the predicted demand is over 25 kW higher than our current new 
demand or if the predicted energy demand is over our current capacity of the battery, 
then do not deploy and wait for a higher usage period. 

This additional rule causes the battery to remain in standby mode even if a new peak is 
occurring if it believes that a larger peak is coming. While the forecast is by no means perfect, it 
does provide a decent enough ‘feel’ for the building’s load profile that the model is able to rely 
on it to improve its decision making process. Overall, this new step improved savings by $246, 
or 5.9% over the trigger based model: 
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Table 3: Model 2 Savings Results 

Month 
Usage Cost 

kWh kW Energy Demand Total 
January 86,645 155 $10,431 $1,628 $12,058
February 77,980 146 $9,390 $1,531 $10,920
March 86,075 159 $10,367 $1,668 $12,035
April 87,824 198 $10,630 $2,078 $12,708
May 92,635 203 $14,346 $3,619 $17,965
June 90,810 192 $14,059 $3,430 $17,489
July 93,948 201 $14,618 $3,590 $18,209

August 91,908 200 $14,241 $3,563 $17,804
September 94,780 211 $14,768 $3,765 $18,533

October 99,481 209 $15,544 $3,726 $19,271
November 88,690 166 $10,613 $1,739 $12,352
December 85,459 145 $10,294 $1,520 $11,814

Total 1,076,234 211 $149,302 $31,855 $181,157
Savings (3,244) 25 354 $4,035 $4,389

 

Model 3: The Probabilistic Model 

 The final version attempts to correct for one underlying issue with the predictive model: 
no forecast is perfect. Without having perfect knowledge of the future or the ability to directly 
control the building’s load, the predictive model’s energy forecast will likely be wrong by some 
factor. While, on average, this deviation will be small, it can have significant consequences for 
demand charges as they are a one-time event (i.e. there is no opportunity to correct a mistake in 
the prediction once the event passes). 

First, though, to digress a bit, when one looks at demand and how it interacts with a 
battery, there are similarities that can be drawn between that system and a financial instrument: a 
call option. By investing money (energy) now, we purchase (store) the ability to swap the current 
price (demand) for the strike price (max demand when we stored the energy). What option 
pricing does is answer the question: how much should one value this ability? In terms of a 
battery storage system, if the premium that is placed on the chance future intervals will exceed 
the current peak demand, then the battery should not deploy, even though it may be setting a new 
peak. 

Looking once again at the November peak day, the probabilistic model was able to 
capture the last 2 kW that the predictive model missed by assuming the tail end of the day was 
going to have heavier usage that it actually did. The probabilistic model was able to predict a 
lower likelihood of a new peak being developed towards the end of the day and was more 
aggressive in its deployment, carrying less energy into the end-of-day flush-out of energy prior 
to the transition into the overnight off peak period: 
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Figure 6: Model 3 vs. Model 2 November 5th Comparison 

The results show that the model was able to maximize demand savings (25 kW) in 11 out 
of 12 months, compared to 8 out of 12 months for the predictive model. While energy cost 
savings were lower, which impacted the total amount, this problem would be easy to fix by 
incorporating peak vs. off-peak pricing into the energy valuation algorithm. If energy costs were 
fixed, the probabilistic model would outperform the predictive model by 1.3%, or 7.4% above 
the original trigger based approach. 

  Table 4: Model 3 Savings Results 

Month 
Usage Cost 

kWh kW Energy Demand Total 
January 86,642 154 $10,432 $1,609 $12,041
February 77,972 146 $9,391 $1,531 $10,921
March 86,071 159 $10,369 $1,668 $12,036
April 87,821 198 $10,632 $2,078 $12,710
May 92,635 203 $14,361 $3,619 $17,980
June 90,810 192 $14,074 $3,430 $17,504
July 93,945 201 $14,633 $3,590 $18,223
August 91,909 200 $14,256 $3,563 $17,819
September 94,777 211 $14,783 $3,765 $18,548
October 99,481 208 $15,562 $3,706 $19,268
November 88,687 164 $10,615 $1,717 $12,332
December 85,455 145 $10,296 $1,520 $11,816
Total 1,076,205 211 $149,403 $31,795 $181,198
Savings (3,216) 25 252 $4,096 $4,348
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Conclusion 

 Battery storage promises to revolutionize several aspects of the utility industry. From 
moving solar power from daytime to evening to creating net zero buildings, there are many 
aspects to battery storage that are exciting and new. However, what matters most to a business is 
whether or not the storage system will provide value and how quickly that value can be captured. 
By using intelligent algorithms that not only look at what the building is doing in its current state 
but also what the building will (or will not) be doing in its future state, that value can be 
measurably improved. Each of the models presented increased in complexity but also in savings 
achieved. While the simplest model is also the easiest one to implement and understand, more 
advanced models have their advantages when it comes down to what end users care about most: 
results.  
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