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ABSTRACT 

Lighting interactive effects refer to the indirect effect on HVAC energy usage due to the 
installation of energy efficient lighting measures. The decline in heat emitted from high 
efficiency lighting may lead to an increase in heating requirements and a decrease in cooling 
requirements. For utilities where lighting interactive effects are applied, the potential increased 
heating requirements can result in significant reductions in gas energy efficiency savings leading 
to difficulty meeting gas goals.  There have been few empirical analyses designed to directly 
measure lighting interactive effects and the findings have been inconclusive.  Previous attempts 
to analyze the existence and size of interactive effects have focused on the residential sector.   

This paper seeks to determine if interactive effects can be observed and reliably 
quantified in the non-residential sector using measure installation information, engineering 
estimates of interactive effects, and monthly and advanced metering infrastructure (AMI) billing 
data. This research focuses on small and medium sized retail business that participated in 
extensive lighting retrofits. In the retail segment, lighting usage forms a relatively high 
proportion of electric consumption, which increases the likelihood of observing the direct impact 
of lighting retrofits in electric consumption and the indirect interactive effects on electric and gas 
consumption.  This research adds to our understanding of interactive effects by expanding the 
limited empirical analyses and extending the analyses to the non-residential sector.  The findings 
from this paper are informative for all lighting retrofit program administrators as well as any 
utility currently implementing or considering implementing gas efficiency savings reductions 
due to interactive effects. 

Introduction 

This study was developed to determine if interactive effects can be observed and reliably 
quantified in the non-residential sector using measure installation information, engineering 
estimates of interactive effects, and monthly and advanced metering infrastructure (AMI) billing 
data. High efficiency lighting measures transform a larger share of energy into light, emitting 
substantially less heat than inefficient lighting measures.  The decline in heat emitted from these 
lighting measures may lead to an increase in the heating usage and a decrease in the building’s 
cooling usage.  These impacts will be referred to as lighting interactive effects (IE). 

This work was commissioned by the California Public Utility Commission (CPUC) and 
focused on California retail customers having participated in a downstream high efficiency 
lighting retrofit in the years 2011-2013. Prior methods used to identify and quantify IE include 
building simulation, engineering spreadsheet analysis, field measurement, and utility billing 
analysis modeling (CPUC 2012; Sezgen 1998; NPCC 2011; Parekh et al. 2005; Brunner et al. 
2010). This study used utility billing analysis modeling and expanded upon the previous billing 
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analysis by extending to the non-residential sector and using building simulation results to 
estimate IE. This approach has the advantage of using these simulation results as well as 
information from actual participants, but has the challenge of identifying a relatively small 
impact within noisy data. 

This paper attempts to respond to three main questions. First, for which end-use impacts 
in the retail sector is a billing analysis approach appropriate? Second, in the cases where it is 
appropriate, were the impacts reliably observed? Lastly, when observed, what was the magnitude 
of the impacts?  

Data Sources 

We relied mainly on four1 different sources of data to perform the study. The first and 
most crucial source was that of the CPUC Energy Efficiency (EE) program tracking data from 
2010-2014. These data include ex-ante2 and ex-post3 impact savings values, installation dates, 
some customer characteristics and additional data. 

Weather data files containing hourly temperature reads for 20 weather stations across 
California were the second main data source used in this study. These data were obtained 
through Schneider Electric. The hourly temperatures were used to calculate daily heating and 
cooling degree days (HDD and CDD) by weather station from January 2009 through December 
2014.  

The third data source of interest was participant consumption data. As part of the 2010-
2012 and 2013-2015 CPUC impact evaluations, Itron manages the non-residential data including 
monthly bills and the aforementioned program tracking data. Monthly bills contain records with 
customer-level consumption for a provided number of days ending on a given meter read date. 
The number of days is typically near 30, but this and the day of the month of the read date can 
vary substantially from customer-to-customer and month-to-month. These data are calendarized 
to create consistent calendar months for a billing analysis. Itron also requested AMI data from 
each utility, which allowed us to develop monthly billing series more reliably. However, limited 
availability of interval data made it necessary to make use of both the AMI and monthly bills in 
the analysis. 

The final data source was interactive effects from building simulation results and 
corresponding population weights. These were provided to Itron by the CPUC Ex-Ante team. IE 
factors were developed from these data, separately, for gas heating units, units providing air 
conditioning and units with only electric heating. These HVAC specific factors were applied to 
the direct lighting savings to calculate customer specific interactive effects for gas heating, 
electric heating and air-conditioning.  

Population Development 

The results presented in this paper are based on several groups of electric and gas sites. 
The purpose of the discussion below is to explain how we arrived at the various analysis 
populations and characterize them in terms of attributes relevant to the analysis. 

                                                 
1 This study also made use of utility Customer Information Systems (CIS) data. 
2 Estimates of expected measure implementation savings used for program planning and contracting purposes. 
3 Impact evaluation estimates of actual energy savings that can be documented after measure implementation. 
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Initial Population 

We started the site identification process using the high efficiency (HE) lighting retrofit 
participants in the four investor owned utilities in California – Pacific Gas & Electric (PG&E), 
Southern California Edison (SCE), Southern California Gas Company (SCG) and San Diego Gas 
& Electric (SDG&E) – from the program tracking data. The definition of HE lighting for this 
analysis was restricted to the general measures: indoor CFLs, indoor LEDs and indoor linear 
fluorescents.  Sites were allowed to have installed multiple HE lighting measures in 2011-2013, 
but were removed from consideration if non-HE lighting measures were installed during the 
years 2010-2014 or if HE lighting measures were installed in 2010 or 2014.  

The definition of a retail site uses the Database for Energy Efficient Resources (DEER) 
building type from program tracking data and the North American Industry Classification 
System (NAICS) code provided in CIS. Size definitions for small to medium were defined by the 
restriction that a site must have had less than 1.75 GWh of usage and an annual maximum 
demand of less than 500 kW. The application of each criterion listed above and the associated 
site counts are listed in Table 1 below. 

Table 1. Identification of Initial Population from Program Tracking Data 

 PG&E SCE SDG&E ALL 
Non-Res 2010-2014 EE Participants 169,527 124,961 22,706 317,194 
Which Installed Lighting During 2011-2013 18,690 62,188 9,517 90,395 
Which Installed Nothing Else 4,843 15,950 2,995 23,788 
Which are Retail Establishments 1,983 3,899 1,790 7,672 
Which have data and are Small - Medium 1,969 3,866 1,772 7,607 
Electricity 
Which have electricity billing data 1,569 3,125 1,545 6,239 
Gas 
Which have natural gas account(s) 1,021 1,0974 576 2,694 
Which have natural gas billing data 1,012 8445 574 2,430 
 

One of the main aspects of this study differentiating itself from prior studies is the use of 
non-residential participants. Indoor linear fluorescent measures are much more common in the 
non-residential sector. Table 2 below demonstrates by utility how the 6,239 electric sites’ 
participation is distributed amongst the three measure types allowed in the study. 
  

                                                 
4 The count of SCE sites identified with having natural gas accounts was a result of a merge between SCE sites and 
SCG sites as noted below. 
5 Natural gas billing data for SCE sites were provided by SCG for those accounts requested by Itron. In many cases, 
data were not provided for accounts requested. 
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Table 2. Initial Population Distribution amongst Measure Types Installed 

Utility 
CFLs 
Only 

LEDs 
Only 

CFLs and 
LEDs 

Linears 
Only 

CFLs and 
Linears 

LEDs and 
Linears 

All HE Lighting 
Measures 

PG&E 4% 24% 1% 53% 13% 3% 2% 
SCE 1% 15% 1% 36% 18% 25% 5% 
SDG&E 2% 7% 0% 47% 35% 6% 4% 
ALL 2% 15% 1% 43% 21% 15% 4% 

 
We see that the vast majority of sites installed some type of linear fluorescent measure 

and, in fact, around 40% of sites installed only linear fluorescent measures. 
Another aspect of a non-residential study that differentiates it from a residential study is 

the definition of a site. In contrast to single family homes in the residential sector, the notion of a 
site is not as clear for the non-residential population. For the purposes of this paper, a site is most 
accurately defined as a best estimate of a self-contained portion of a structure or structures 
having a similar business activity with a single energy use decision maker. With this definition a 
retail site is most often a single unit within a building housing multiple units with varying 
business activities or a stand-alone retail establishment owned or rented by the energy 
consumption and equipment manager. A single site typically contains multiple accounts. 

Data Attrition 

Having identified a population of participants appropriate for the study, the next step was 
to collect and compile the data necessary to conduct the analysis. Numerous data anomalies were 
identified during this process that led to the removal of participants from the initial population, 
which is referred to as data attrition. The process of participant attrition from the analysis dataset 
was carefully considered and reviewed to ensure that no bias was introduced to the analysis.  

It is critical that each participant in the study have sufficient billing data in both the pre- 
and post-install periods to model the impacts. Considering the constrained number of 
participants, a threshold of 10 months was applied. Given this threshold and the importance of 
seasonality on HVAC usage, a minimum number of calendar months and billing days in the 
winter and summer periods was required. 

Anomalies such as missing or excessively low values for consumption, large gaps 
between the end date of one bill record and the start date of the next, or extreme variation in 
consumption during the analysis period were considered. However, no minimum bill usage 
amount was set for natural gas due to the nature of its use in the summer months. For each site 
the coefficient of variance of monthly bills was required to be below 100 for electricity and 200 
for natural gas consumption.   

Sites were removed if they had savings values considered to be statistical outliers. The 
statistic in question is the ratio of ex-ante impacts to consumption. Thresholds were set at 75% 
for direct lighting savings and 35% for other IE effects. Each of these thresholds was set after 
reviewing the quartiles of these ratios. 

Myriad issues arise when attempting to group accounts. Sites were removed if it appeared 
as though an account that should have been grouped with the site was not. In a mirroring fashion, 
sites were removed if accounts were grouped together that should not have been. Additionally, 
sites were removed if the building type of certain accounts grouped in the site did not use energy  
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in a way consistent with a retail establishment. Lastly, sites were removed from the analysis 
population because the number of active accounts adding consumption to the site in the pre- 
versus post-install period varied drastically.  

Impact Specific Populations 

A key step in establishing the analysis populations was identifying participants 
appropriate for modeling the different effects.  It does not make sense to either include a site 
without air conditioning in the electric model or to apply that particular interactive effect. 
Unfortunately, it is not always obvious when a participant has air conditioning, electric heating, 
or gas heating.  

As a means of identifying which participants should be associated with the different 
heating and cooling effects, Itron relied on an analysis of the partial correlations6 between usage 
and HDD/CDD. The criteria for each population is listed below: 

• AC: positive correlation between kWh and CDD and a p-value of at least 10%. 
• Elec. heating: positive correlation between kWh and HDD and a p-value of at least 10%. 
• Gas heating: positive correlation between thm and HDD with a p-value of at least 10%. 

Data Attrition Summary 

Below, we review the effect of the attrition rules discussed above on the populations for 
natural gas and electricity and then how the application of the end use specific criteria affects 
each. Table 3 summarizes the number of natural gas sites lost due to each attrition criteria. 

Table 3. Natural Gas Population Attrition and Final Population Counts by Utility 

 PG&E SCE SDG&E ALL 
Initial Gas Population 1,012 844 574 2,430 
Sites w/ Insufficient Usage Data -99 -219 -147 -465 
Sites w/ Billing Data Anomalies -305 -184 -160 -649 
Sites w/ Impact Data Anomalies -198 -30 -62 -290 
Sites w/ Site Aggregation Issues -77 -11 -68 -156 
Final Gas Population 333 400 137 870 

 
We see that insufficient billing data and billing data anomalies led to the removal of the 

largest number of sites. It is worth noting, however, the relatively large number of sites 
eliminated due to impact data anomalies in the natural gas population for PG&E.  

Table 4 below summarizes the overall loss due to attrition from the natural gas 
population. Also, Table 4 shows the final number of sites determined to have gas heating, using 
the criterion mentioned above, and how these numbers compare to the number of sites in the 
natural gas population after attrition. 
  

                                                 
6 A partial correlation means the relationship between two variables when controlling for the influence of a third. In 
this case, the third variable was HDD when looking at the correlation of CDD and usage and CDD when looking at 
the correlation of HDD and usage. 
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Table 4. Natural Gas End Use Specific Population and Percent of Appropriate Population 

Utility Initial Natural Gas  % after Attrition Gas Heating % with Gas Heating 
PG&E 1,012 333 33% 322 97% 
SCE 844 400 47% 333 83% 
SDG&E 574 137 24% 109 80% 
ALL 2,430 870 36% 764 88% 

 
Moving forward these 764 sites in the column headed “Gas Heating” will be referred to 

as the gas heating population. 
In Table 5, we review the attrition criteria effects on the electricity population. Here we 

see significant losses due to each criterion. Specifically, we note the large loss due to site 
aggregation issues. This was mainly due to the number of electricity accounts typically 
associated with a site and difficulty of maintaining reliable data for each of them. 

Table 5. Electricity Population Attrition and Final Population Counts 

 PG&E SCE SDG&E ALL 
Initial Electricity Population 1,569 3,125 1,545 6,239 
Sites w/ Insufficient Usage Data -69 -569 -88 -726 
Sites w/ Billing Data Anomalies -293 -214 -105 -612 
Sites w/ Impact Data Anomalies -238 -187 -115 -540 
Sites w/ Site Aggregation Issues -233 -475 -347 -1,055 
Final Electricity Population 736 1,680 890 3,306 

 
Table 6 below summarizes the overall loss due to attrition from the electric population. 

Also, Table 6 shows the final number of sites determined to have each of the IE end uses and 
how these numbers compare to the number of sites in the lighting population after attrition. 

Table 6. Electricity Impact Population Counts and Percent of Parent Population 

Utility 
Initial 
Population 

Lighting 
Population

Percent 
After Attr. AC  

Percent w/ 
AC 

Elec. 
Heating  

Percent w/ 
Heating 

PG&E 1,569 736 47% 382 52% 230 31% 
SCE 3,125 1,680 54% 1,032 61% 383 23% 
SDG&E 1,545 890 58% 429 48% 238 27% 
ALL 6,239 3,306 53% 1,843 56% 851 26% 

 

The site counts summarized in this table will hence forth be referred to by their column 
headings. For example, the 1,843 sites counted in the column entitled “AC” will be called the 
AC population. 

Since the IE factor used to calculate gas heating IE is applied to direct lighting savings, it 
was important to be able to model the direct lighting savings and gas heating IE for the same 
population. This population contains exactly the 488 sites in both the 3,306 sites from the 
lighting population and the 764 sites from the gas heating population. The breakdown by utility 
of each final analysis population is provided in Table 7. 
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Table 7. Final Impact Specific Analysis Population Counts 

Utility 
Lighting 
Population 

AC 
Population 

Electric 
Heating  

Gas Heating 
Population 

Direct 
Comparison  

PG&E 736 382 230 322 229 
SCE 1,680 1,032 383 333 188 
SDG&E 890 429 238 109 71 
ALL 3,306 1,843 851 764 488 

Population Characteristics 

The average consumption, the average effects of weather, and the average impact of 
savings or increases in consumption each have a fairly large effect on the billing analysis 
method. These characteristics and their differences in the pre- and post-install period are 
summarized for the model populations below. 

Table 8 lists the annual average electricity usage and degree day variables in the pre- and 
post-install periods. This gives a view of the amount of energy consumed in each population, the 
amount of weather effect expected and whether or not these factors were drastically different 
before and after the measures were installed. 

Table 8. Pre- and Post-Install Annual Consumption and Degree Days for Electric Populations 

Model 
Population Sites 

Average 
Pre kWh 

Average 
Post kWh 

Average 
Pre CDD

Average 
Post CDD

Average 
Pre HDD 

Average 
Post HDD

Lighting  3,306 36,014 32,966 843 1,028 1,664 1,463 
Air Conditioning 1,843 38,695 36,253 1,080 1,307 1,651 1,448 
Elec Heating 851 21,571 20,068 758 945 1,785 1,566 

 

The rather consistent drop in heating degree days and increase in cooling degree days 
indicates that the post-install period was on average warmer than the pre-install period. However, 
on the whole, the pre- and post-install period consumption and degree days are comparable. 

Table 9 presents the ex-ante impacts for the electricity population as they compare to 
consumption. Each of these percentages is the average of the annual ex-ante impact taken as a 
portion of the pre-install kWh. 

Table 9. Ex Ante Electricity Impacts as Percent of Pre-Installation Electricity Consumption 

Model Population # Sites 
Average 
Pre kWh 

Ex-Ante 
Lighting Savings 

Ex-Ante 
IE - AC  

Ex-Ante 
IE - Heat 

Lighting 3,306 36,014 13.8% 1.2% 0.2% 

AC  1,843 38,695 12.6% 2.1% 0.2% 
Electric Heating  851 21,571 17.4% 1.5% 1.3% 

 
The most telling information from Table 9, is the relative ratio of the ex-ante IE for AC 

and electric heating to pre-install consumption. Even within the overall AC population, the IE 
from AC accounts for only 2% of consumption making the observation of this effect in a billing 
analysis very difficult. However, the ex-ante impact of direct lighting is on average around 10-
15% of consumption. 
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Table 10 gives a summary of annual natural gas consumption and heating degree days in 
the pre- and post-install periods. The data includes the full gas heating population as well as 
those sites for which both the gas heating and direct lighting models were estimated.   

Table 10. Pre- and Post-Install Annual Consumption and Degree Days for Gas Populations 

Model Population # Sites 
Average 
Pre thm 

Average 
Post thm 

Average Pre 
HDD 

Average Post 
HDD 

Gas Heating 764 738 706 2,034 1,830 
Direct Comparison 488 603 568 2,060 1,837 

 
Heating degree days, by in large, decrease from the pre-install period to the post-install 

period. There is a decline in average natural gas consumption, though the magnitudes are still 
comparable across pre- and post-install periods and this is likely due to the decline in HDD. 

A similar comparison of annual pre-install natural gas consumption to the average annual 
ex-ante IE increase is provided in Table 11.  The IE of heating is about 5-6% of average 
consumption. This puts the effect within a range that makes finding reliable model results much 
more likely than the ex-ante IE electric impact of approximately 1% of consumption. 

Table 11. Consumption and Ex Ante IE Gas Impact Natural Gas Population 

Model Population 
# 
Sites 

Average 
Annual Pre thm

Average Ex-Ante Annual IE 
Increase from Gas Heating 

Ex-Ante IE from 
Heat over Pre thm 

Gas Heating 764 738 47.3 6.40% 
Direct Comparison 488 603 29.0 4.81% 

Model Specifications 

Both the electric and natural gas analyses were based on a panel data structure where a 
series of up to 12 months of pre-installation and 12 months of post-installation consumption data 
(normalized to a 30.4 day month) for each participant is lined up with explanatory variables 
(weather, calendar variables, and the savings and/or interactive effects). The electric and gas 
billing models were estimated separately. The billing analysis for each was conducted using a 
cross-sectional, time-series regression to estimate the impacts of interest. In each case, a fixed 
effects model was used to address the energy-related characteristics of the business that do not 
change over time, such as, the size of the business, the business hours of the retail establishment, 
and the presence of major electric or gas appliances and heating equipment.   

Natural Gas Model 

We estimated a natural gas model of the following form: 
ℎ݉௜௧ݐ  = ௜ߙ	 + ଵߛ ⋅ ௧ݎܻܽ݁ + ଶߛ ⋅ ℎ௧ݐ݊݋ܯ + ௜ߙ)௜ߜ ⋅ (௜௧ܦܦܪ + ߚ ⋅ ௜௧݃ݐܪܧܫ +  ௜௧ߝ
 
Where ݐℎ݉௜௧ is the monthly gas consumption, measured in thm, for site i in month t, ߙ௜ is 

the fixed effect vector for site i, and ܻ݁ܽݎ௧ and ݐ݊݋ܯℎ௧ are time fixed effect vectors for each 
calendar month and each calendar year.  
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The variable ݐܪܧܫ ௜݃௧ is the ex-ante estimated increase in gas consumption following the 
lighting installation. This variable is site-specific and the annual value given by ex-ante estimates 
is distributed to the 12-month post-period and zero prior to a participant’s installation. The 
impacts are distributed to months using the normalized average HDD, in month t, over the past 
20 years. ܦܦܪ௜௧ is the heating degree days for site i in month t, which is interacted with the site-
specific fixed effect. Finally, ߝ௜௧ is the random disturbance term to be minimized. 

The coefficient of primary interest is ߚ,	which represents the average realization rate of 
the engineering estimated monthly increase in heating usage. 

Electricity Model 

The general form of the electricity model we estimated was as follows: 
 ܹ݇ℎ௜௧ = ௜ߙ	 + ଵߛ ⋅ ௧ݎܻܽ݁ + ଶߛ ⋅ ℎ௧ݐ݊݋ܯ + ௜ߙ)௜ߜ ⋅ (௜௧ܦܦܪ + ߶௜(ߙ௜ ⋅ (௜௧ܦܦܥ + ଵߚ ⋅ ݐܮ ௜݃௧+ ଶߚ ⋅ ௜௧ܥܣܧܫ ⋅ ௜݈݃ܨܥܣ ଷߚ	+ ⋅ ݐܪܧܫ ௜݃௧ ⋅ ௜݈݃ܨ݃ݐܪ +  ௜௧ߝ
 
Here, ݐܮ ௜݃௧ is the ex-ante monthly savings directly from lighting, which is zero in the 

pre-installation period and positive in the post-installation 12 months. This is calculated as the 
site specific annual direct lighting savings multiplied by a monthly load factor for lighting usage 
taken from the approved cost-effectiveness calculator for the California utilities.  ܥܣܧܫ௜௧ and ݐܪܧܫ ௜݃௧ are the ex-ante indirect monthly impacts on AC and heating usage as 
a result of installing high efficiency lighting. They are calculated by multiplying site specific 
annual direct lighting savings by the IE factor for AC/electric heating and distributed to months 
using a monthly load factor. For AC this factor is taken from the approved cost-effectiveness 
calculator for the California utilities. For heating the monthly load factor is created using the 20 
year monthly average percent of heating degree days. ݈݃ܨܥܣ௜ and ݈ܨ݃ݐܪ ௜݃ are binary – 1 or 0 – 
indicator flags for the AC and electric heating populations.  

The ߚ coefficients are of primary interest, as they determine whether or not IE was 
observable in this billing analysis model. Each is the slope coefficient on the corresponding 
impact.  They represents realization rates on these ex-ante impacts. Since the direct lighting 
savings variable is positive, ߚଵ is expected to be negative. Since the indirect AC savings variable 
is positive and the IE for AC is an additional reduction, ߚଶ is expected to be negative. Since ݐܪܧܫ ௜݃௧ is positive and the IE from heating is an increase in consumption, ߚଷ is expected be 
positive. 

Model Specification Variations 

In addition to varying which sites and accompanying time periods were included in each 
model estimation, the model specifications and variable constructions were attempted in multiple 
manners. We review here four main variations. Each of which was explored in combination with 
each other, leading to a very large number of permutations. 

Different approaches were explored for how to use separately or combine the monthly 
and AMI data. The AMI data were not regularly available for both the 12-month pre- and post-
installation periods necessary for the model. However, these data are more reliable and desirable 
for use in the model estimation. Models were estimated for calendarized monthly bills and where 
available calendar AMI data separately. Finally, the “hybrid” approach of creating a single usage 
series that takes AMI data when available and calendarized monthly data otherwise was used. 
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The simulation data provided by the CPUC DEER team allowed for the creation of 
annual estimates of IE for each consumption end use modeled. For modeling purposes, these 
annual values needed to be distributed amongst the post-period months. This analysis employed 
two different approaches to develop monthly IE series. The first was to take the annual 
interactive effects and allocate them to monthly values based on the share of HDD or demand 
load shapes.7 The second approach was to use the annual value in the model and interact it with 
the actual HDD or CDD in the model estimation.  

Controlling for participant response to weather is the single most important factor in 
isolating the savings and/or IEs associated with the installation of lighting measures. This study 
looked at the multiple approaches for incorporating the effects of weather in the model. The first 
approach used a single HDD and/or CDD variable in the model specification. Within this 
approach, we looked at different thresholds for calculating degree days and/or the inclusion of a 
quadratic term to capture non-linear relationships. Next, we considered separate slopes for HDD 
and/or CDD. This refers to the interaction of the site specific fixed effect with each degree day 
variable in the model specification. Lastly, a Princeton Scorekeeping Method (PRISM) was 
incorporated. This approach uses a single degree day series where the degree day threshold is 
participant specific. An analysis to determine the HDD/CDD thresholds that have the highest 
correlation with monthly usage during the pre-installation period was performed to select the site 
specific threshold.  

Every model specification estimated included a fixed effect for the participant, but in 
addition there were different ways to include fixed effects for time. Three methods were 
explored in detail. The first and simplest was to include a time fixed effect only for each calendar 
year. The second was the inclusion of a time fixed effect for each calendar month. The final time 
fixed effect employed was that of separate fixed effects for the month and the year. 

Final Model Selection 

The final models for both electricity and gas were modeled statewide. Any stratification 
would have resulted in too few participants in the models. The final models were based on 
separate analysis populations for each of the different IE impacts. The basis for this approach 
was that it would help to isolate the effects in question and reliably estimate the associated 
parameters.  

The usage series was based on a “hybrid” version, where data based on interval data was 
used when available but was supplemented by calendarized monthly bills when necessary. A 
large analysis population is highly desirable for this type of study, and using the hybrid series 
allowed for the inclusion of many more participants. Also, while the usage based on interval data 
is better, our analysis showed that the calendarized monthly bills were a very good 
approximation and their conclusion would not jeopardize the analysis.  

The representation of all impacts was based on the version where the ex-ante annual 
values were allocated to calendar months using degree day or DEER end use load shape 
proportional shares. In addition to generating very similar results to the interacted version, this 
approach had the advantage of having more easily interpreted parameter estimates.  
  

                                                 
7 See the section on Model Specifications for an explanation of this distribution. 
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Time fixed effects were based on separate effects for year and month as opposed to a 
strict time series effect based on the year and month combined. This was virtually 
inconsequential in the model results, but it was determined that the separate year and month 
effects might do a better job of capturing calendar effects irrespective of the participation date.   

Finally, the representation of weather effects was based on separate slope models with a 
linear degree days series calculated using a base temperature of 65 degrees Fahrenheit. The 
representation of weather did result in more substantial differences in the model results, so the 
justification for this approach deserves more scrutiny. The decision to go with participant-
specific slopes was based on two key considerations. The first is that at numerous points in this 
analysis it was abundantly clear that there is substantial variability across participants in the 
relationship between consumption and temperatures. The second reason is that this approach 
resulted in more stable and intuitive parameter estimates for the impacts of interest. 

Results 

The results for the two gas analysis populations are presented in Table 12. The parameter 
estimates for IE gas heating are positive and statistically significantly different from zero8 for 
both groups. Though markedly closer to a realization rate of X%9 for the subset of directly 
comparable participants, the result for the full set of gas participants should be considered the 
more accurate estimate. In addition to the intuitive idea that a larger population produces more 
reliable results, the standard error of the estimate for this model is much smaller than for the 
directly comparable participant subset. With respect to the direct lighting savings, the parameter 
estimate of X is statistically significant and the right sign. Viewed together, these results tell us 
that for this set of comparable participants, the HE lighting produced roughly half the expected 
energy savings, which resulted in around X% of the estimated increase in gas heating. 

Table 12. Natural Gas Population - Model Estimate Results for IE Gas Heating 

 IE - Gas Heating Direct Lighting Savings 
Analysis 
Population 

# 
Sites R2 Est. 

Std. 
Err 

t-
Val 

Pr > 
|t| R2 Est. 

Std. 
Err t-Val 

Pr > 
|t| 

Gas 
Heating 

764           

Directly 
Comparable  

488           

 
The results for the electric heating and AC IEs are presented in Table 13 and Table 14. 

The direct lighting savings are the correct sign and statistically significant, indicating realized 
lighting savings of around X% and X% for the two analysis populations. With respect to the IEs, 
however, neither parameter estimate is the correct sign or statistically significant. What these 
results suggest is that in spite of clear energy savings from HE lighting – though lower than 
expected – the analysis did not generate any evidence of the expected electric IEs. 

                                                 
8 For this study, any p-value less than or equal to 0.05 was considered to be statistically significant. 
9 At this stage, results for this study are not publicly available and the client has asked that they be redacted at this 
point. Results will be final within a few months. 
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Table 13. Electric Heating Population – Model Estimate Results for IE Electric Heating 

 IE - Electric Heating Direct Lighting Savings 
Analysis 
Population 

# 
Sites R2 Est. 

Std. 
Err 

t-
Value Pr > |t| Est. 

Std. 
Err 

t-
Value Pr > |t|

Elec. 
Heating 

851          

Table 14. AC Population – Model Estimate Results for IE AC 

 IE - AC Direct Lighting Savings 
Analysis 
Population 

# 
Sites R2 Est. 

Std. 
Err 

t-
Value Pr > |t| Est. 

Std. 
Err 

t-
Value Pr > |t| 

AC  1,843          
 
These results are not altogether surprising in hindsight. Given the small percent of 

electricity consumption represented by the IE impacts, observing the effects through a billing 
analysis was unlikely.  There is also an important issue with multicollinearity, perhaps due to the 
likelihood of AC and heating use for general space conditioning within retail establishments. 

As a result of the inability to stratify, the basis for consistency is hidden in these results. 
This basis is found, though, in all the different modeling approaches that were explored during 
the analysis. For the gas heating IEs, the models generated positive and statistically significant 
parameter estimates with very high consistency. The only notable difference was that when the 
single HDD representation of weather was used, substantially higher estimates for the IEs were 
generated. No other approaches provided drastically differing results. And, further, within a 
particular approach for weather representation, the estimated effects were very stable. However, 
for the electric IEs, the models were highly inconsistent both within and across modeling 
approaches.  

Conclusions and Recommendations 

At the outset of this study, the stated objective was to estimate the observable interactive 
effects of lighting retrofits on non-residential energy efficiency program participants. Upon 
completion, however, proper consideration of the results called for addressing three related but 
separate questions. First, is the billing analysis approach used for this study an appropriate way 
of estimating IEs? Second, if the method is appropriate, are the interactive effects statistically 
significantly different from zero? And third, if so, what are they? This summary of results and 
findings will revolve around the answers to the questions. 

With respect to whether the methods used to estimate the observable interactive effects 
was appropriate, the answer is both yes and no. While this is unsatisfying, the results revealed 
clear conditions where the method is likely to succeed or fail. For the gas heating IEs, where the 
effect sizes are more substantial, this study’s results suggest that the methods applied are valid 
for generating reliable estimates of the IEs. In contrast, for the electric IEs, even after taking 
many different approaches to isolate a population where the models would more easily identify 
the effects, the evidence was limited and not as consistent. In general for the electric models, 
there are likely issues with multicollinearity that make it difficult, if not impossible, for a 
statistical model of this nature to parse and estimate the separate impacts.  
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With respect to the gas results, the answer to the question of whether the IEs are 
statistically significantly different from zero is yes.  The gas heating IE results conformed to 
expectations and were consistently estimated, which is a convenient segue to the final question.  

For the gas heating analysis population, the approach was clearly appropriate and the 
estimated heating IEs were statistically significantly different from zero with a consistency 
conferring reliability. Given that we believe these results are valid, what do they say about the 
IEs? The models do not provide IEs per se. Rather, they produce realization rates for the ex-ante 
IEs. These results are for just small retail establishments and there is no reason to believe they 
apply equally to other business types. As such, we believe that as strong as the evidence is, these 
results should be used as impetus to look more closely at the combination of the ex-ante lighting 
savings and IEs jointly. If the ex-ante lighting savings are higher than they should be – which 
this study’s results suggested – then it could very well be that the estimates in this study are 
actually consistent with the engineering-based effects. 
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