Ground-Source Integrated Heat Pump System – field measured WH performance

2016 ACEEE Hot Water Forum

Shawn Hern – ClimateMaster, Inc. Van Baxter, Jeff Munk, and Tony Gehl – Oak Ridge National Laboratory

Portland, OR February, 22-23, 2016

ORNL is managed by UT-Battelle for the US Department of Energy

ational Laboratory

Contents

1. GS-IHP system description

2. Field test site and monitoring approach descriptions

- 3. Test results
- 4. Concluding observations

GS-IHP System description

Knoxville, TN Day care center Test system installation

GS-IHP System description

- Variable speed (VS) WSHP utilizing a unique refrigerant circuit to reliably allow 4 modes of operation:
 - Space heating (SH)
 - Space cooling (SC)
 - Space cooling + domestic water heating (SC+WH)
 - Dedicated domestic water heating (WH)
- VS compressor allows 1) constant WH output regardless of ground temp. and 2) a "boost" WH capacity mode when the SH demand is high to decrease the tank recovery time.
 - WH has priority unless space temp. falls below min. limit in winter

GS-IHP System description

 The packaged system includes a customized version of a commercially available water storage tank and integral system control board

electric elements used for backup or emergency WH

- Communications between controller, WSHP, and storage tank
 - monitors set points, space, tank water, and loop temperatures, and operation modes for optimal system and comfort control
 - lower tank temperature controls heat pump WH operation
 - upper tank temperature controls upper element backup operation
- Large 1-1/4" hot water injection port below lower element reduces tank mixing to acceptable levels.

GS-IHP Schematic: SC+WH mode

GS-IHP Schematic: WH only mode

Oklahoma City, OK Homeless shelter dormitory

Knoxville, TN Day care center Kitchen Aerial view (Photo courtesy Google Maps)

Oklahoma City, OK Homeless shelter dormitory Two GS-IHP units each serving 10 dormitory units of 250 ft² each Two other non-integrated GSHPs serving building common areas and offices

GHX – ten vertical boreholes, each 500 ft. deep and 25 ft. apart

Field Test Monitoring Approach

Sensor locations

- Monitoring start August 2015 at Knoxville
- Monitoring start late January 2016 at OKCity

Data logger @ Knoxville site

WH meters @ Knoxville site

Field Test Data Analysis Approach

Space cooling delivered (SC Mode)

 $Q_{SC} = V_{GroundLoop} \rho_{GroundLoop} c_{GroundLoop} (LWT - EWT) - W_{IHP}$

Space cooling delivered (SC +WH Mode)

$$Q_{SC} = Q_{WH,IHP} - W_{IHP}$$

Space heating delivered

 $Q_{SH} = V_{GroundLoop} \rho_{GroundLoop} c_{GroundLoop} (EWT - LWT) + W_{IHP}$

Water heating delivered by IHP

 $Q_{WH,IHP} = V_{DHWLoop} \rho_{DHWLoop} c_{DHWLoop} (LDHWT - EDHWT)$

Water heating delivered to building

$$Q_{WH} = V_{Hot}\rho_{Hot}c_{Hot}\left(T_{Hot}^{1} - T_{Cold}\right)$$

¹Due to the numerous small volume hot water draws and the response time of the hot water

temperature sensor, T_{Hot} was taken to be the tank temperature measured at the upper element. NOTE --

Simulated performance of baseline RTU/heat pump + electric storage WH system operating under same delivered loads and indoor/outdoor conditions as GS-IHP for energy savings estimation

GS-IHP Field Test Unit vs. Baseline performance ratings

Parameters	GS-IHP	Baseline RTU/WH
Cooling capacity (Btu/h)	18,000 (min speed, 68F EWT) ^a 48,000 (max speed, 77F EWT) ^a	48,000 @ 95F ^b
Cooling EER	45.1 (min speed, 68F EWT) ^a 21.6 (max speed, 77F EWT) ^a	11.4 @ 95F ^b
Cooling SEER	na	13.0 ^b
Heating capacity (Btu/h)	24,000 (min speed, 41F EWT) ^a 60,000 (max speed, 32F EWT) ^a	45,000 @ 47F ^b 28,000 @ 17F ^b
Heating COP	5.1 (min speed, 41F EWT) ^a 3.3 (max speed, 32F EWT) ^a	3.05 @ 47F ^b 2.26 @ 17F ^b
WH capacity (kW)	~8.2-11.7 for 110F HW entering & 35-80F EWT	4.5
WH COP (or EF)	~2.5-5.0	1.00 (0.94 EF)
SC+WH combined EER	Up to 30 (min speed) Up to 19 (max speed) 110 F entering HW	na

 ^aRatings per ANSI/AHRI/ASHRAE/ISO 13256-1; water source heat pumps; EWT → entering ground HX fluid temperature
^bRatings per ANSI/AHRI 210/240; air source heat pumps

Kitchen WH demand profile

operating hours: ~7-5, 5 days/week

GS-IHP system energy and HW use for week of 8/30-9/5/2015

National Laboratory

GS-IHP Field Test Unit vs. Baseline August-December field performance, Knoxville

Parameters	GS-IHP	Baseline RTU/WH
	(measured)	(estimated)
Total space cooling (SC) delivered, kWh	5943	5943
SC energy use, KWh	766	1382
(GS-IHP savings vs. baseline)	(44.6%)	
Average SC COP	7.75 ^a	4.30
Total space heating delivered, kWh	0.0	0.0
Water heating (WH)		
WH from heat pump to tank, kWh	863	
WH del. to kitchen, kWh (gal.)	703 (~6700)	703 (~6700)
GS-IHP tank backup, kWh	0.8	
Total WH energy use, kWh	197	748
(GS-IHP savings vs. baseline)	(73.7%)	
Average WH COP or EF	3.57 ^b	0.94
Total system energy use (savings %)	1011 (53.6%)	2178 ()
Carbon eq. emissions (MT)	0.7	1.5

^aCombined value for SC only and SC+WH modes ^bCombined value for WH only and SC+WH modes; based on WH delivered to kitchen

GS-IHP Field Test Unit vs. Baseline August-December monthly avg. hourly peak kW

Month	GS-IHP (% reduction for GS-IHP)	Baseline RTU/HP + WH (estimated)
August 18-31	1.705 (58.9%)	4.153
September 1-30	2.923 (32.9%)	4.357
October 1-31	1.642 (57.4%)	3.851
November 1-30	1.888 (59.0%)	4.609
December 1-14	1.531 (57.5%)	3.606
Total period maximum peak demand	2.923	4.609

Peaks generally occurred in early afternoon Noon-1pm or 1-2pm

GS-IHP Field Test Unit vs. Baseline Total energy cost savings for August 18 -December 14 test period (based on local utility rate structure)

	GS-IHP	Baseline
		RTU/HP + WH
Electricity consumption	\$118	\$254
Electricity demand	\$131	\$277
Total costs	\$249	\$531
Energy cost savings vs. baseline	\$282 (53.1%)	

Summary

- GS-IHP system demonstrated ~54% energy savings vs. simulated RTU/heat pump + electric storage WH baseline system meeting same loads at the Knoxville test location
- up to ~60% monthly hourly peak kW reduction vs. base RTU/WH
- Energy cost savings of ~53% for GS-IHP
 - More than half from demand cost reduction
- Field demonstration to continue through August 2016 with data from both sites
 - Final report will include cost/payback analysis

Questions?

Shawn Hern – <u>shern@climatemaster.com</u>

WSHP website:

http://www.climatemaster.com/residential/climatemaster-trilogy-45-modeseries-heat-pump/

Van Baxter – <u>vdb@ornl.gov</u>

