BUSINESS MODELS FOR UTILITIES OF THE FUTURE: EMERGING TRENDS IN THE SOUTHEAST

John Sibley

Senior Policy Fellow, Southface Energy Institute In Cooperation with Dr. Marilyn Brown, Ben Staver, and Alex Smith (Georgia Tech)

ACEEE EE as a Resource Conference Little Rock, 2015

Southface promotes sustainable homes, workplaces and communities through education, research, advocacy and technical assistance.

THE NATIONAL CONTEXT

Southface

Disruptive threats to utility business models:

Source: Peter Kind (2013). *Disruptive Challenges: Financial Implications and Strategic Responses to a Changing Retail Electric Business*. Edison Electric Institute.

GEORGIATECH/SOUTHFACE RESEARCH ON SE

Purpose: provide a tool and illuminate impacts of emerging EE business models in the Southeast:

- Built new modeling tool for the analysis
- Surveyed IOU business models in 11 states
- Identified an emerging prototype
- Characterized a realistic Southeastern IOU
- Analyzed impacts on the utility and customers with the modeling tool

We appreciate the support of the Energy Foundation.

GEORGIATECH'S MODELINGTOOL: GT-DSM

- Runs in Microsoft Excel
- > Freely available under open source license
- > Relies entirely on publicly available inputs
- Integrates existing methods from Tech and others
- Adds features requested by review committee
 - Capital investment deferrals
 - Potential impacts of high-consumption participants
 - Fuel cost impacts ("DRIPE" effect)

The modeling tool and user's manual are at http://cepl.gatech.edu/projects/mecp/modeling.

SURVEY: NAPEE'S THREE-LEGGED STOOL EMERGES IN THE SOUTHEAST

Recovery of Program Costs

Expensed contemporaneously – general practice Amortized over several years – not found <u>Recovery of Lost Revenues</u>

Lost revenue adjustment mechanism – 7 states Per customer decoupling – not found Straight fixed variable rate – not found **Provision of Performance Incentive** Shared savings based on TRC – 3 states Shared savings based on PAC – 2 states Return on program costs – 1 state

See "Aligning Utility Incentives with Investments in Energy Efficiency," National Action Plan for Energy Efficiency, 2007, <u>http://www.epa.gov/cleanenergy/documents/suca/incentives.pdF</u> Molina and Kushler, "Policies Matter: Creating a Foundation for an Energy Efficient Utility of the Future, 2015, http://aceee.org/sites/default/files/policies-matter.pdf.

Aligning Utility Incentives with Investment in Energy Efficiency

A RESOURCE OF THE NATIONAL ACTION PLAN FOR ENERGY EFFICIENCY

NOVEMBER 2007

THE PROTOTYPICAL APPROACH USED IN THE SE

The prototypical approach is highlighted for each "leg" of the threelegged stool:

- Shared Savings based on PAC test
- Shared Savings based on TRC test
- Return on Program Costs

OBSERVATION: DEBATE ON BEST PRACTICE FOR LOST REVENUES IS NOT OVER IN THE SE

Examples:

- AR led the way in refining LRAM, has invited utilities to propose decoupling mechanisms, and is considering annual adjustments through a formula rate plan
- VA has questioned the proof of lost revenues and denied recovery in several proceedings
- > In NC, recovery is limited to 3 years
- Georgia Power continues to prefer to recover lost revenues in rate cases every 3 years
- LA and MS are early in the implementation of the three-legged stool

CHARACTERIZATION OF A REALISTIC IOU

Using public data on Georgia Power, a hypothetical but realistic IOU was characterized in GT-DSM. GPC was not replicated.

- 2.4 million customers, with annual sales of 81.1 TWh and a peak demand of 15.4 GW
- Customers grow 1.0% per year; sales and demand grow 1.24%
- Earnings are \$1.2 billion based on an 11.25% return on equity
- Average rates are 12 ¢/kWh for residential and 8 ¢/kWh for C/I
- > Residential rates are volumetric; C/I rates have demand charge
- Capital is 54% equity and 46% debt; WACC is 8%
- > Major capital investments are programmed over several years
- Rate case filed every 3 years

THE IOU'S ENERGY EFFICIENCY PORTFOLIO

- Utility invests 0.5% of revenues in residential and commercial programs and saves 0.4% of retail sales
- Residential (lighting, appliances, whole house, new home, and refrigerator recycling) cost \$19.1M, save 57.8 GWh per year.
- Commercial (custom, prescriptive, and small business) cost \$19.2M, save 241 GWh per year; no industrial program
- > 8% of residential and 10% of commercial savings occur during peak period, much more than the 3.7% of the year that is peak
- Programs will deploy measures for 10 years, and the commercial measure life is 15 years, so our analysis of the impacts of these programs extends for 25 years

RESULTS: IMPACTS ON THE UTILITY AND CUSTOMERS

Marilyn A. Brown, Benjamin Staver, Alexander M. Smith, and John Sibley. 2014. "Business Models for Utilities of the Future: Emerging Trends in the Southeast," School of Public Policy, Georgia Institute of Technology, Working Paper #84, <u>http://cepl.gatech.edu/sites/default/files/attachments/BusinessCase_10-28-</u> 2014%20_WP84.pdf#

Brown, et al., "Alternative Business Models for Energy Efficiency: Emerging Trends in the Southeast," Electricity Journal (2015), http://www.sciencedirect.com/science/article/pii/S1040619015000664

THE IMPACT OF COMMERCIAL EE PROGRAMS

	Utility Economics		Customer Economics				
	Cumulative Earnings in \$Billions ^a	Return on Equity (%) (25-Year Average)	Average Commercial Energy Bill (\$/year)	Participant Energy Bill (\$/year)	Non- participant Energy Bill (\$/year)	Average Commercial Energy Rate (¢/kWh)	
Utility Without EE Programs	47.02	11.46	28,107	NA	NA	12.37	
+ Commercial EE Programs	45.22	11.04	26,747	22,293	28,070	12.35	
+ Prototypical Business Model	46.79	11.41	27,015	22,516	28,351	12.50	

- Utility economics are hurt by EE programs, but both participants and nonparticipants enjoy reduced bills because of the "DRIPE" effect.
- The prototypical business model restores 99.7% of utility earnings and provides earnings above the target of 11.25%, but rates rise by 1.0%.

THE IMPACT OF RESIDENTIAL EE PROGRAMS

	Utility Economics		Customer Economics				
	Cumulative Earnings in \$Billions ^a	Return on Equity (%) (25-Year Average)	Average Residential Energy Bill (\$/year)	Participant Energy Bill (\$/year)	Non- participant Energy Bill (\$/year)	Average Residential Energy Rate (¢/kWh)	
Utility Without EE Programs	47.02	11.46	2,533	NA	NA	19.23	
+ Residential EE Programs	45.84	11.18	2,484	2,343	2,533	19.22	
+ Prototypical Business Model	46.88	11.43	2,511	2,367	2,560	19.42	

- Utility economics are hurt by EE programs, and participants benefit without adding cost for non-participants ("DRIPE" effect).
- The prototypical business model restores 99.7% of utility earnings and provides earnings above the target of 11.25%, but rates rise by 1.0%.

THE "DRIPE" EFFECT – DEMAND REDUCTION INDUCED PRICE EFFECT

- EE programs reduce rates by eliminating a greater proportion of more expensive on-peak than off-peak fuel expenditures.
- Even if the utility recovers program costs and is paid incentives, there is still downward pressure on rates because of the "DRIPE" effect.
- But with this combination, the utility is still left short of the earnings and ROE it would receive without the EE programs.

Note: Deferring "new builds," environmental retrofits, and T&D upgrades would be additional benefits, but these were not specified for the modeled utility.

IMPACT ON UTILITY EARNINGS

THE PROTOTYPICAL BUSINESS MODEL'S IMPACT ON RATES

Rates decline with EE Programs, but increase when lost utility revenues are recovered.

AVERAGE CHANGE IN ENERGY BILLS

CONCLUSIONS

- Utility earnings are reduced by EE programs, but they can be restored by alternative business models.
- > With these alternative models, EE programs:
 - cause modest increases in electricity rates,
 - o significantly reduce the electricity bills of participants.
- Depending on the choice of business model, non-participant utility bills may also decline.
- Selecting the right business model is important to the future of EE programs.

FOR MORE INFORMATION

John Sibley Senior Policy Fellow, Southface 404/816-3126 jsibley@southface.org www.southface.org

