
Con Edison's Integrated Demand Side Management Potential Model

ACEEE National Conference on Energy Efficiency as a Resource

Michael Harrington Energy Efficiency and Demand Management

Con Edison

Con Edison Background

What you know

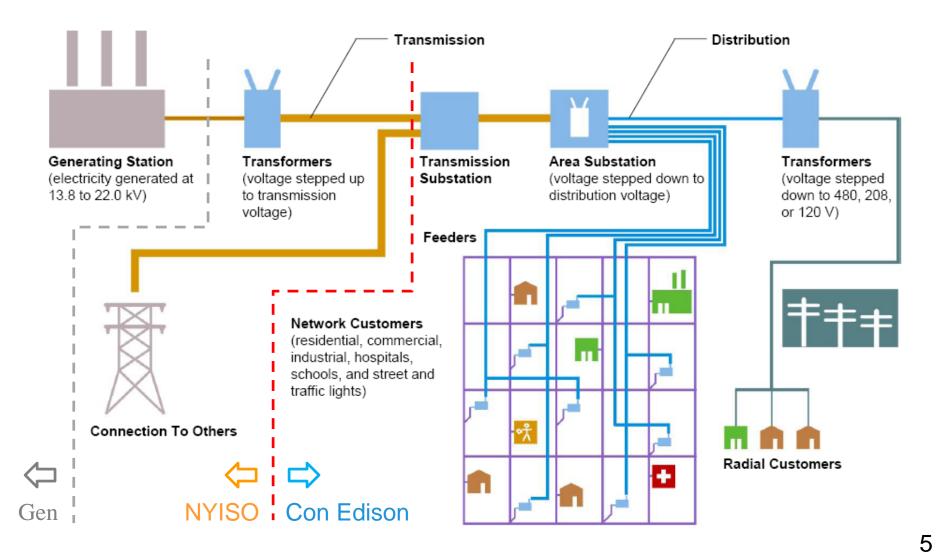
What you may not

Con Edison Footprint

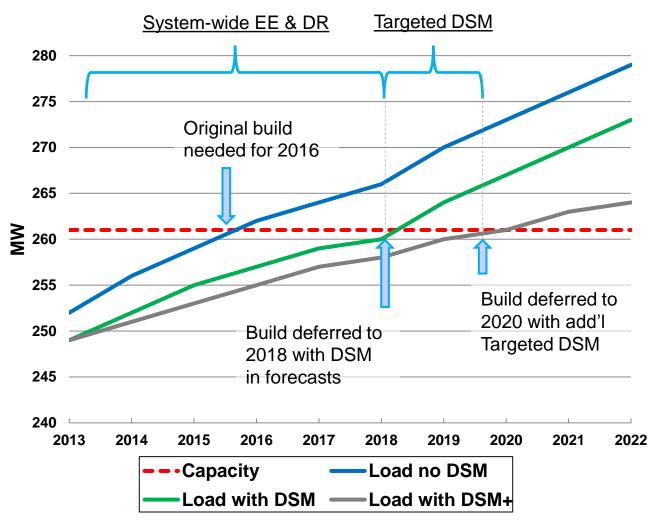
- » 660 square miles
- 133,000 miles of T&D cable **》**
- » 6⁺ million room A/C units

Customers

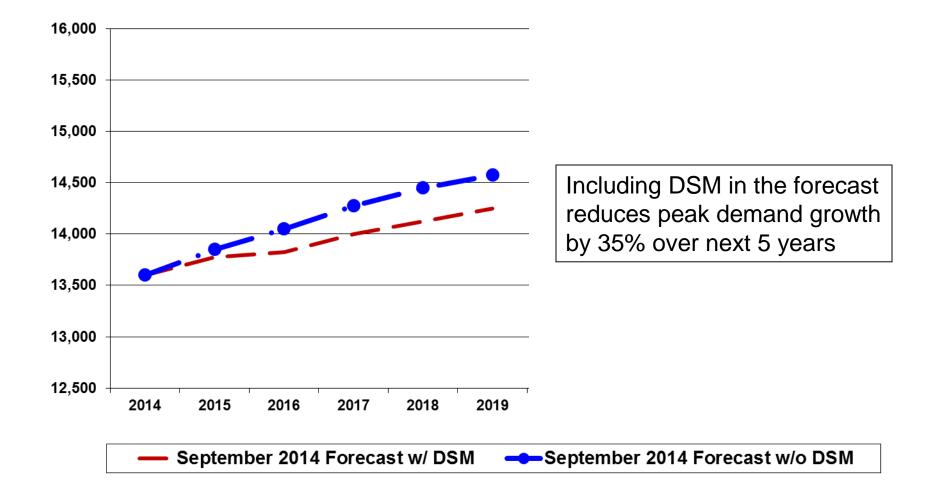
- » Population / square mile: 13,825 70,000
- » 3.3m electric, 1.1m gas accounts, ~9m ppl served


Consumption

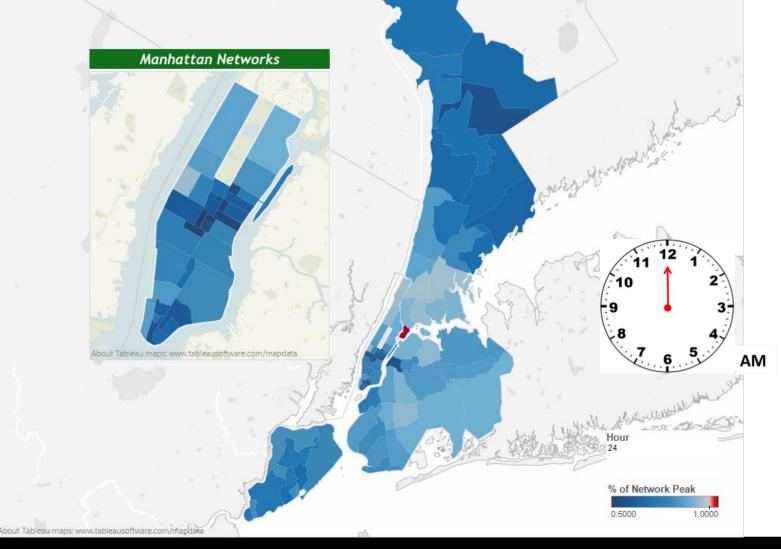
- » MW / square mile: 20 2,000
- » 57 billion kWh annually
- » > 13,000 MW peak demand



NYS Electric System - Restructured


Infrastructure build deferrals via systemwide EE/DR programs and targeted DSM

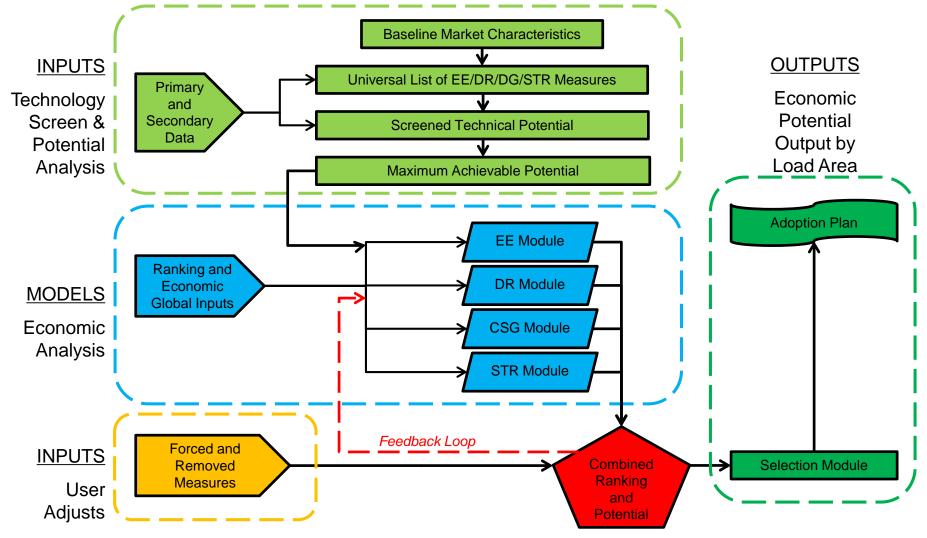
- Forecast with EE and DSM resources to reduce system costs
- Include in engineering, system planning
- » Target programs to increase value and address gaps



EE & Targeted DSM: A Measurable Impact on Demand

Challenge: 82 network loads vary by location and by hour of a peak day

How much, where, and when could EE and DSM be targeted for infrastructure deferrals?


Integrated Demand Side Management Potential Model

10

Integrated Demand Side Management model evaluates potential and economics

GREEN TEMM

IDSM Potential Model Highlights

- Holistic DSM analysis EE, DR, DG, ST
- Includes capital plan needs and costs (and benefits)
- Scalable and updatable
- Highly flexible (77 input levers) for scenarios

- Results by technology
- Results by measure
- Results by market segment
- Results by network, network groups, borough, & system

DSM Technology Screening

- 1) Technical Viability
- 2) Applicability to Service Territory
- 3) Best Available Technology

- 4) Quality Data
- 5) Acceptability of Measure by Customer
- 6) Duplication

	Number of Measures			
Technology Area	Universal List	Passed Screen	% of Total	
Energy Efficiency (EE)	94	51	54%	
Demand Response (DR)	44	14	32%	
Distributed Generation (DG)	31	11	35%	
Energy Storage (ES)	18	5	28%	
Total	187	81	43%	

Potential by segment and technology

17 Market Segments

tial	Single Family		
Residentia	Small Multi-Family (2-4 units)		
Res	Large Multi-Family (> 5 units)		
	Office-Large (> 50,000 sqft)		
	Office-Small (< 50,000 sqft)		
	Restaurant		
	Retail		
ria	Grocery		
lust	Warehouse		
[Ind	Education		
Commercial/Industria	Hospital		
ierc	Nursing Home		
mm	Lodging		
8 Entertainment			
	Miscellaneous		
	Multi-Family Residential		
	(common areas only)		
	Industrial		

15 End Use Load Shapes

Total Facility (Electric)

Total Lighting (Electric)

Lighting Interior (Electric)

Lighting Exterior (Electric)

Plug Loads (Electric)

Cooling (Electric)

Heating (Electric)

Fans/Ventilation (Electric)

Total HVAC (Electric)

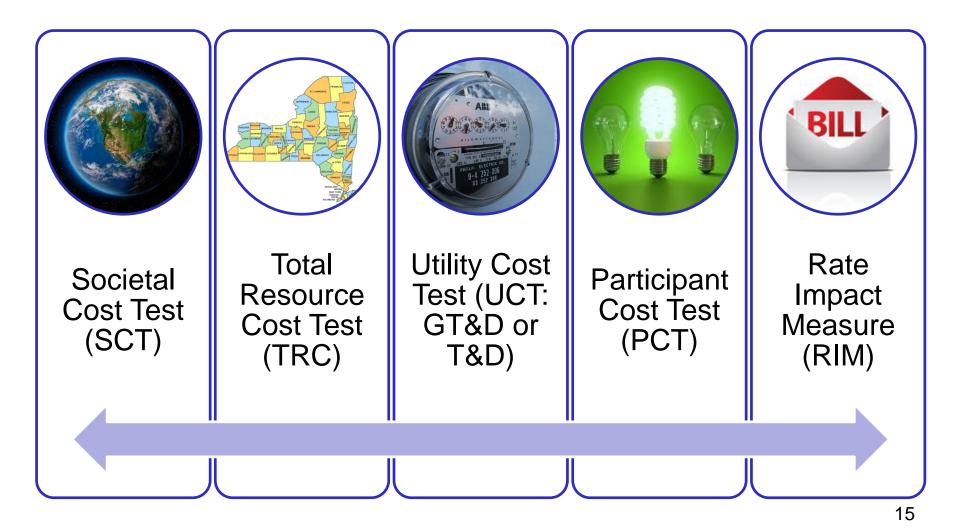
Refrigeration (Electric)

Hot Water (Electric)

Total Facility (Gas)

Heating (Gas)

Hot Water (Gas)


Interior Equipment (Gas)

14

IDSM Model can evaluate DSM cost effectiveness from all perspectives

GREEN TEMM

Sample IDSM Analysis

16

Analytica Model Inputs Interface

Data Import and Refresh

Model Run Inputs	
Active Network Selection	Edit Table
Model Start Year	2014
Model End Year	2018

Network Inputs	
NYISO Load Zones	Zone I Upper Bron 🔻
Municipality	City of New York 🔹
Transmission Region	Brooklyn 🔻
 CECONY Service for Alternative Fuel?	Edit Table

Portfolio Inputs		
Procurement Target	[Load Reduction 🔹
Peak Load Reduction Target	[Annual 👻
Annual Peak Load Reduction Target	(MW)	Edit Table
Total Peak Load Reduction Target	(MW)	41
Incremental Peak Load Reduction Th	hreshold	100%
Cost Test Weights	(Edit Table
Network PCAF Hours Method	[Standard Deviation 🔹
Network PCAF Hours	(Hours)	100
PCAF Weighting	[Weighted 🗸
Budget Target	[Annual 👻
Annual Budget	(\$)	Edit Table
Annual Admin Budget	(\$)	Edit Table
Total Budget	(\$)	\$136.1M
Total Admin Budget	(\$)	\$13.61M
Budget Threshold	[100%
Measure Incentive levels and	Utility Costs	
Max Portfolio Composition	(%)	Edit Table
All Measure B/C Threshold	(B/C Ratio)	1
Technology B/C Threshold	(Edit Table
Portfolio Adjustment Inputs	;	
EE Peak Reduction Multiplier		1
DR Peak Reduction Multiplier		1
STR Peak Reduction Multiplier		25
CSG Peak Reduction Multiplier	(1
EE Forced Measure Selection	(Measures)	Edit Table
DR Forced Measure Selection	(Measures)	Edit Table
CSG Forced Measure Selection	(Measures)	Edit Table
STR Forced Measure Selection	(Measures)	Edit Table
EE Measure Inclusion	ĺ	Edit Table
DR Measure Inclusion	(Edit Table
CSG Measure Inclusion		Edit Table
STR Measure Inclusion	0	Edit Table

Avoided Cost Inputs			
GTD or TD perspective for cost tests?		TD	•
System Energy Loss Factor		Edit Table	
System Capacity Loss Factor	(% of kW)	Edit Table	
System PCAF Hours Method		Standard Deviation	1 ▼
System PCAF Hours	(Hours)		100
T&D Avoided Cost Component Selection	· [Edit Table	
Financial Inputs			
Societal Discount Rate			2%
Utility WACC			7%
Customer Discount Rate	C	Edit Table	
Dollar Years for Model		2014	•
Customer Inputs			
Customer Type Mapped to Tariff	C	Edit Table	
Dollar Year for Tariff Prices	(Year)	2013	•
Tariff Escalation Rate			2%
Customer Type Service Voltage	C	Edit Table	
DR Program Definition			
Program Properties		Edit	Table
T&D Investment Plan Inputs			
T&D Investment Plan		Edit Table	
Capital Recovery Factor	(%)		10%
TD investment Inflation Rate	(%)		2%
Adoption Curves	_		
Use payback and S-curve for CSG		N	lo 🔻
Use payback and S-curves for EE		Y	′es ▼
Use payback and S-curves for STR		N	lo ▼
Use payback and S-curves for DR			lo 🔻

17

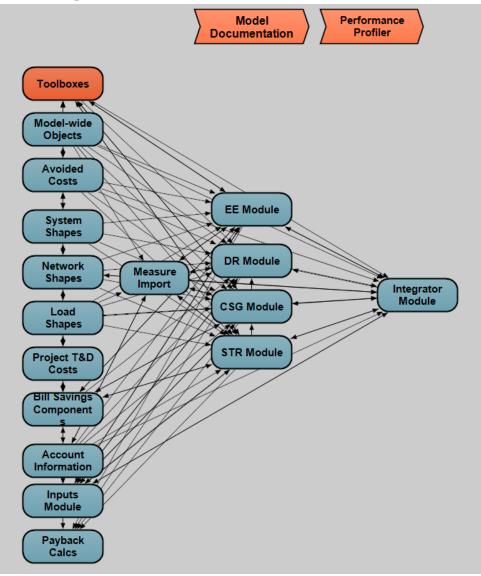
Analytica Model Outputs Interface

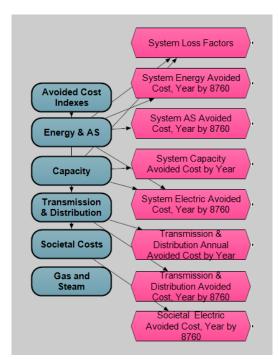
Portfolio Selection Results	
Annual EE Measures	Calc mid
Cumulative EE Measures	Calc mid
Annual DR Measures	Calc mid
Cumulative DR Measures	Calc mid
Annual CSG Measures	Calc mid
Cumulative CSG Measures	Calc
Annual STR Measures	Calc
Cumulative STR Measure	Calc

Measure Cost Effectiveness Results			
EE Benefit/Cost Ratios	(B/C Ratio)	Calc	nid
DR Benefit/Cost Ratios	(B/C Ratio)	Calc	nid
CSG Benefit/Cost Ratios	(B/C Ratio)	Calc	nid
STR Benefit/Cost Ratios	(B/C Ratio)	Calc	nid
EE NPV Lifecycle Costs and Benefits	(NPV\$)	Calc	nid
DR NPV Lifecycle Costs and Benefits	(NPV\$)	Calc	nid
CSG NPV Lifecycle Costs and Benefits	; (NPV\$)	Calc	nid
STR NPV Lifecycle Costs and Benefits	(NPV\$)	Calc	nid

Calculate Portfolio

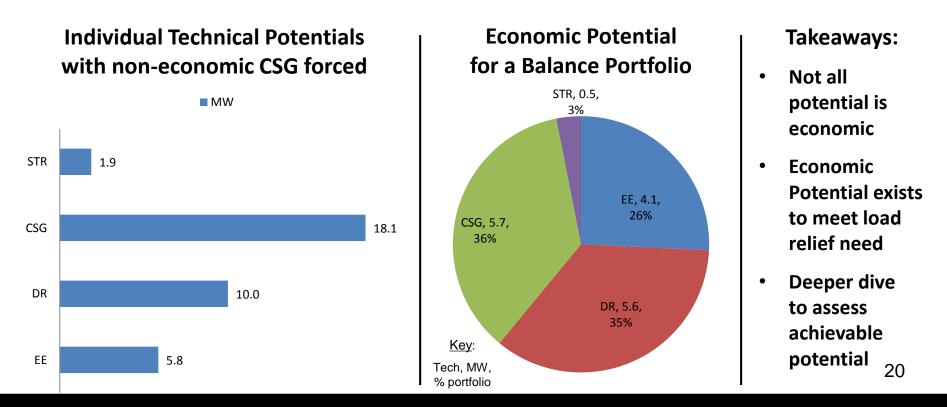
Calculate Portfolio


Portfolio Results

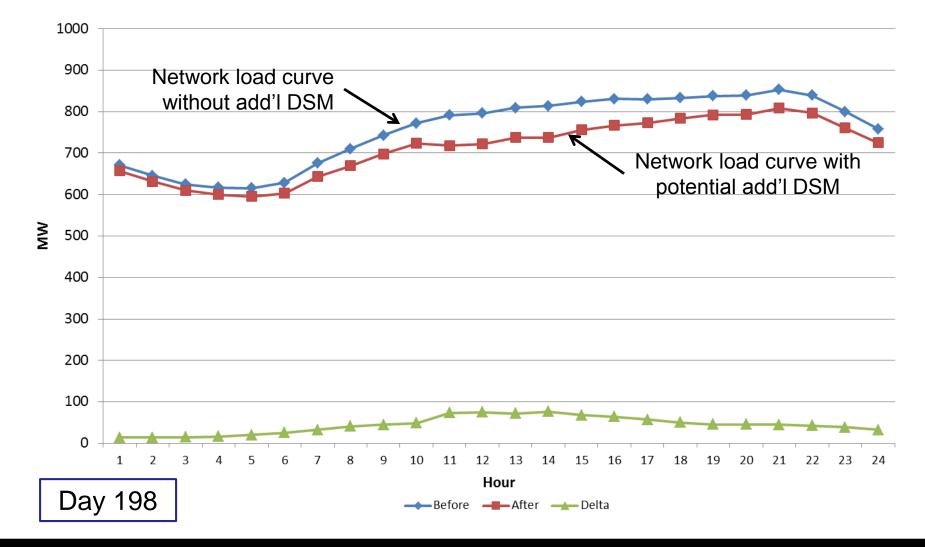

Technology Portfolio Cost-Effectiveness	(NPV\$) Calc mid
Total Portfolio Cost Effectiveness	(NPV\$) Calc mid
Technology Portfolio Benefit/Cost	(NPV\$) Calc mid
Total Portfolio Benefit/Cost	(NPV\$) Calc mid
Total Portfolio Net Benefit	(NPV\$) Calc mid

Other Results			
Network loads	(MW)	Calc	mid
Peak Day Network Loads	(MW)	Calc	mid
Total Network PCAF Hours	(Hours)	Calc	mid
Total System PCAF Hours	(Hours)	Calc	mid

Analytica Model Examples Modules



IDSM Sample Analysis


 Model assumptions: portfolio analysis for DSM need of 16 MW (~10% of network peak demand) over the next 4 years (2015-2018); customer incentives based on 3 year customer payback

ConEdison

GREENTE

IDSM output compares network peak demand with and without DSM potential

IDSM Model Next Steps

- Update benefit cost test(s) for REV
- Update and expand measures list and costs
- Build day and hour targeting inputs
- Enhance customer segmentation and load curves
- Expand to more granular system view (below network)
- Expand capabilities for strategic planning forecasts

Other Con Edison ACEEE Presentations

- Today: Session 2B 3:30pm to 5:30pm
 - Energy Efficiency as a Targeted Transmission and Distribution Resource
 - Presenter: Josh Bode, Nexant

