Expanding Efficiency Services and Advancing Utility Program Strategies with M&V 2.0

Ellen Franconi, Rocky Mountain Institute 2018 ACEEE Efficiency as a Resource November 1, 2017

Measurement & Verification

Aggregated savings

Site Specific

2

Measurement & Verification Common M&V Regression Models

Source: CCC, 2012, Guidelines for Verifying Savings in Commercial Buildings,

Source: Franconi, E. and D. Jump, ASHRAE Journal, September 2017

3

Measurement & Verification

Advancements due to better data access and more computing power

M&V 1.0 - Monthly

M&V 2.0 - Hourly or Daily

Source: David Jump. kW Engineering

Measurement & Verification

Advanced M&V models

Example of an Advanced M&V Model: LBNL Time of Week and Temperature Model

Source: Price et al, "Using Whole Building Electric Load Data in Continuous or Retro- Commissioning," LBNL, July 2011.

Advanced M&V

Common M&V	M&V 2.0
Linear regressions	Non-linear/advanced analytics
12 monthly points / year	8760 hourly points /year
12 month monitoring duration	3 – 6 month duration
Energy Use = f(Temp)	Energy Use = f(Time, Temp)

Benefits

- Timely insights
- Ongoing feedback
- Risk management
- Demand response
- Grid friendly buildings
- Efficiency as a resource

Expanding Efficiency Services

Advanced M&V Benefits New models, tools, and capabilities

Data rich intelligent efficiency

Automated Audits Customer Engagement Performance Assessment Fault detection and diagnostics

Measurement and Verification

Customer Segmentation and Targeting

Program Planning and Optimization

Considerations

- Building type or sector focus
- Tool design intent
- Degree of automation
- M&V method
- Transparency

Energy Service Provider Questions about adopting an advanced M&V approach

Using Whole Building Electric Data

- How accurate are savings?
- Which is a better business model a performance contract or service contract?

ASHRAE Guideline 14

- Linear model uncertainty calculations
- For billing data M&V (Option C), savings must be stated +/- 50% within a 68% confidence interval
- Generally less uncertainty with more data

$$\frac{\Delta E_{save}}{E_{save}} = t \frac{1.26}{F \text{ m} \overline{E}_{base,n}} \left[MSE' \left(1 + \frac{2}{n'} \right) m \right]^{0.5}$$
$$MSE' = \frac{1}{n' - p} \sum_{i=1}^{n} \left(E_i - \hat{E}_i \right)^2$$

Source: Franconi, E. and D. Jump, "Leveraging Smart Meter Data and Advanced M&V to Expand Efficiency Services," ASHRAE Journal, Vol. 59, No. 9, September 2017.

Uncertainty Analysis Results Relative to baseline energy use

FIGURE 4 Uncertainty associated with monthly, daily, and hourly baseline electricity regression models.

4-parameter change point

LBNL TOWT

LBNL TOWT

Source: Franconi, E. and D. Jump, "Leveraging Smart Meter Data and Advanced M&V to Expand Efficiency Services," ASHRAE Journal, Vol. 59, No. 9, September 2017.

1<u>0</u>

Uncertainty Analysis Results Relative to 5% to 15% savings target

Source: Franconi, E. and D. Jump, "Leveraging Smart Meter Data and Advanced M&V to Expand Efficiency Services," ASHRAE Journal, Vol. 59, No. 9, September 2017.

1<u>1</u>

Summary: Expanding Efficiency Services

Advanced M&V Benefits

- More data => higher confidence in savings
- Granular data => shorter M&V period
- Granular data => temporal energy savings
- More robust models => operational savings opportunities and supporting services

Challenges

- Need industry agreement on advanced M&V model acceptance criteria
- Testing methodology needed for "black box" models
- Need industry agreement of uncertainty analysis methods for non-linear models

Advancing Utility Programs

Measurement & Verification Utility stakeholder perspectives

Source: The Changing EM&V Paradigm prepared for the Northeast Energy Efficiency Partnership by DNV GL

14

Advanced M&V Timely, temporal and locational efficiency savings

- Owners will benefit from early warnings of performance issues and enhanced service offerings
- Service providers can apply more robust methods to identify and address under performance
- Program administrators can adjust program designs more quickly
- 3rd party evaluators can provide early indicators of savings and potentially hasten the evaluation process
- Regulators will appreciate the increased detail and **improved** claims accuracy
- Grid Planners can receive temporal and locational verification of savings

Varied stakeholders will benefit from increased timeliness of savings estimates with improved resolution that provide more actionable insights

https://rmi.org/news/report-release-status-promiseadvanced-mv/

- 168 42.295

Next Generation Utility Programs Moving towards meter-based savings

SB350

- Double the end use energy efficiency goals
- Pay for performance utility programs with goals, budgets, savings, and incentives linked to metered-based performance
 AB802
- Utilities must provide owners with utility metered energy data
- Must determine how to incorporate meter-based performance into program design, incentives, and evaluation
 CPUC Guidance
- Encourage savings not yet accounted for e.g. operational, behavioral, and retro-cx activities
- Lead with high opportunity programs and inform programs that follow

Next Generation Utility Programs Pay for Performance

- Better aligns market forces
- More accountability for rate payers
- More accountability placed on service providers
- More flexibility in efficiency solutions
- Shifts risk from utilities to market operators
- Less PUC expense to obtain data required for program evaluation

Implications

- Existing conditions baselines appropriate for efficiency as a DER
- Impacts programs with code baselines
- Driving development of standardized platforms for M&V and data sharing

Next Generation Utility Programs Planning for the future

Scenario	Key Features	Details
Stage 1	Meter-based savings assessed alongside current programs	 Identify appropriate programs Discuss baseline definitions Discuss standardization of M&V Ramp up smart meter installation
Stage 2	Viable programs incorporate meter- based savings	 Execute programs through rolling RFP requests of demonstrated technologies Standardize methods for determining savings 100% smart meter installation
Stage 3	Start initiating efficiency dynamically	 Dynamic implementation driven by TOU rates and aggregator bidding Automated DR/EE platform supports DER integration
Stage 4	Realize price-signal driven transactional energy	 IT platform provide data access, security, standardized, and automated transactions System operator provides 15-minute price signals Aggregators and Balancing Service Providers deliver DERs

