

we are icf

Combined Heat and Power (CHP) as a Grid Resource

Meegan Kelly

2017 ACEEE National Conference on Energy Efficiency as a Resource

November 1, 2017

icf.com

Summary of **Key Points**

- 1. CHP supports the goals and objectives of grid modernization
- 2. CHP can enable renewable energy integration and help balance the grid
- 3. Electric utilities are gaining new value from CHP -CHP in utility energy efficiency portfolios
 - -Procuring CHP as a distribution resource
 - -Owning CHP as a generation asset

Grid Modernization is Gaining Momentum

Source: NCCETC, The 50 States of Grid Modernization: Q1 2017 Quarterly Report, May 2017, https://nccleantech.ncsu.edu/wpcontent/uploads/GridMod Q12017 FINALREPORT.pdf. NCCETC, The 50 States of Grid Modernization: Q2 2017 Quarterly Report, August 2017, https://nccleantech.ncsu.edu/wp-content/uploads/GridMod_Q22017_Final-1.pdf

proprietary and confidential. Do not copy, distribute, or disclose.

Defining "Grid Modernization"

Depends on who you ask...

Narrow: How new technologies -- such as advanced metering infrastructure (AMI) and other smart sensors and controls -- can improve how the grid functions.

Broad: How a range of actions can make the electric grid more reliable, resilient, and capable of integrating an increasing number of DERs.

State Policy Objectives of Grid Modernization

Figure 1: Normalized State Objectives and Attributes

- Modern Distribution Grid *Report* – 3 volumes from US DOE in 2017
- Examined legislative and regulatory documents from 11 states to extract objectives and attributes of the future grid

Objectives	CA	DC	FL	ні	IL	MA	MN	NC	NY	OR	ΤХ
Affordability	•	•	•	•	•	•	•	•	•	•	•
Reliability	•	•	•	•	•	•	•	•	•	•	•
Customer Enablement	•	•	•	•	•	•	•	•	•	•	•
System Efficiency	•	•	•	•	•	•	•	•	•	•	•
Enable DER Integration	•	•	•	•	•	•	•	•	•	•	•
Adopt Clean Technologies	•	•	•	•	•	•		•	•	•	•
Reduce Carbon Emissions	•	•	•	•				•	•	•	•
Operational Market Animation	•	•		•		•	•		•		

Attributes	CA	DC	FL	ні	IL	MA	MN	NC	NY	OR	ΤХ
Safety	•	•	•	•	•	•	•	•	•	•	•
Cyber-physical Security	•	•	•	•	•	•	•	•	•	•	•
Operational Excellence	•	•	•	•	•	•	•	•	•	•	•
Resiliency	•	•	•	•	•	•	•	•	•	•	•
Flexibility	•	•	•	•	•	•	•	•	•	•	•
Transparency	•			•	•		•		•		

ietary and confidential. Do not copy, distribute, or disclose

Source: http://doe-dspx.org/sample-page/modern-distribution-grid-report/

CHP Supports Grid Modernization Objectives

Grid Modernization Goal	How CHP Supports Goal
Grid Reliability	CHP can improve power quality, provide ancillary services, and relieve grid con
Customer Resiliency	CHP can provide baseload power for microgrids, allowing critical loads to contin during grid outages
Energy Efficiency	CHP uses less fuel and is more efficient, which saves energy compared to con- generation and separate heat production
DER Integration	CHP can help utilities integrate new renewable DER deployments and balance
Locational Value	CHP can be deployed at strategic locations on the system where it is needed n
Affordability	CHP can often meet system needs more cost-effectively than investments in tra assets, thus lowering costs for ratepayers across the utility system
Emissions Reductions	Efficient CHP systems have lower emissions than conventional grid resources, used to meet emissions reduction targets

straints

nue operation

ventional

variable loads

nost

aditional

and can be

Princeton University CHP System Enables Renewable Integration and Flexible Operation

- 15 MW natural gas turbine
- CHP center of microgrid
- Integrates 4.5 MW of solar energy
- Continued operations during Sandy

- Can quickly ramp up and down generation as needed
- Regularly dispatches into the PJM's frequency regulation market

Source: The Princeton Review

Multiple Pathways for Utility Involvement in CHP

CHP in Utility Energy Efficiency Portfolio

 Encourage customers to install CHP to gain low-cost energy savings

CHP as a Distribution System Resource

 Encourage customers to install CHP as non-wires alternative to defer investments

Utility-Owned CHP for Grid Generation

 Build, own, and operate CHP at customer sites as part of resource planning

CHP in Utility Energy Efficiency Portfolio

- Baltimore Gas & Electric incentivizes CHP at customer sites
- Initiated in 2012 through EmPOWER Maryland Energy Efficiency Act
- BGE estimates 72,000 MWh of savings (10.7 MW capacity) in 2018 - 2020 program
- Savings from 22 participants, compared to thousands for other energy-efficiency measures

CHP Installation at Upper **Chesapeake Medical Center**

Source: Baltimore Gas & Electric

CHP as a Distribution System Resource

- Utilities can gain value with DERs instead of traditional grid infrastructure
- ConEdison's deferral of \$1.2 billion substation upgrade with customer-sited DERs in Brooklyn Queens Demand Management (BQDM) program
- Popular example of how utilities can procure CHP to meet distribution system needs
- Gives utilities greater control over how and where CHP is deployed in service territory

Utility-Owned CHP as a Regulated Asset

- Duke Energy approved to install a \$50.8 million CHP project at Clemson University
 - 16 MW gas turbine CHP
 - Steam from CHP sold to Clemson at low-cost
 - Electricity from CHP to power grid customers
 - Operational in 2019
- Duke Energy incorporates customersited, utility-owned CHP into IRPs in IN, NC, and SC.

ICF proprietary and confidential. Do not copy, distribute, or disclose

Conclusion

- Grid modernization and DERs require new approaches to resource planning
- CHP can be part of vision for building modern, flexible, costeffective grid
- Utilities that consider CHP as a grid resource are likely to find it lowers costs and provide value to their shareholders and customers

12

Thank you!

Meegan Kelly <u>Meegan.kelly@icf.com</u> 301-572-0978

ICF proprietary and confidential. Do not copy, distribute, or disclose.

