Development of Low-cost ENERGY STAR[®]-Qualified Residential CO₂ HPWH Prototype

Kyle Gluesenkamp, PhD Oak Ridge National Laboratory February 23, 2015

ACEEE Hot Water Forum, Nashville Session 3A

ORNL is managed by UT-Battelle for the US Department of Energy

ational Laboratory

Outline

- Project goals
- Considerations specific to transcritical heat pumps
 - Temperature glide in hot refrigerant
 - Importance of tank stratification
- Design method wrap around gas cooler
- Results to date

Acknowledgments

- DOE Building Technologies Office, Emerging Technologies – Antonio Bouza
- GE Appliances (CRADA partner) Craig Tsai

US has Presidential commitment (Climate Action Plan) to phase out HFCs:

- Demonstrate a more affordable path to ENERGY STAR[®]-qualified residential CO₂ HPWH
 - Low GWP, no direct environmental impact
 - Configured for price point appropriate to US market
 - Evaluate system for FHR, EF
- Also cooler climate potential: evaluate EF_{NC} (NEEA Northern Climate specification)

ENERGY STAR Criteria

For electric water heaters:

- EF ≥ 2.0
- FHR \geq 50 gallons
- Must report low ambient temperature at which compressor shuts off

Transcritical Heat Pump – P-h

- Supercritical gas does not condense, so "condenser" is called a "gas cooler"
- Temperature glide of supercritical gas

Transcritical Heat Pump – T-h

High Side Pressure Optimization

- For a given gas cooler outlet temperature:
 - A COP-optimum high side pressure exists

Based on cycle model, assuming simple reverse transcritical cycle (no suction line heat exchanger); CO₂ refrigerant; 2°C saturation temperature in evaporator; 100 kPa pressure drop in gas cooler; 50 kPa pressure drop in evaporator.

High Side Pressure Optimization

- For a given gas cooler outlet temperature:
 - Capacity increases with increasing pressure

Based on cycle model, assuming simple reverse transcritical cycle (no suction line heat exchanger); CO₂ refrigerant; 2°C saturation temperature in evaporator; 100 kPa pressure drop in gas cooler; 50 kPa pressure drop in evaporator.

Water Heater Tank – Stratification

Stratification minimizes gravitational potential energy

Difference in gravitational potential energy = 2.9 J 3 gpm flow through ¹/₂" pipe has 0.2 J/s

Water Heater Tank – Stratification Principles

- Warmer water on top of colder ("positive" gradient) is stable (for fluids with positive coefficient of thermal expansion, like liquid water above 4°C)
- An "inversion" (negative gradient) is unstable and will "overturn"
- A strong positive gradient resists external forces
- A weak positive gradient is susceptible to external forces

Water Heater Tank – Stratification Phenomena

Phenomenon	Storage systems to which phenomenon is relevant :
Stratification due to cold inflow at bottom	All
Mixing due to high velocity inlet	All
Stratification due to hot inflow at top	Sidearm; external heat exchanger systems
Mixing above, and stratification below, a heat source	Systems with a burner or immersed electric element; HPWH WAHX with bottom-up refrigerant flow
Stratification due to temperature glide of external heating source	Transcritical HPWH with WAHX ; Condensing HPWH with top-down refrigerant flow

Water Heater Tank – Stratification

- Stratification empirical results (50 gallon tank)
 - 12 hours standby losses (no draws)

Gas Cooler Options

Wrap-around:

External:

Gas Cooler Type

Wrap-around vs. external (e.g. plate or tube-in-tube)

Characteristic	External heat exchanger	Wrap-around heat exchanger
Cost	🔀 High	Low
Water fouling	Significant challenge	None
Water pump	🔀 Required	Not required
Additional tank water inlet/outlet ports	Kequired	Not
Performance	💎 Good	? Needs research

Approach

This project:

Note: Heat pump to be packaged on top of tank, but shown here spread out for visual clarity

EcoCute:

- Additional elements (cost):
- Split system (high installation cost)
- Inverter-driven compressor
- Electronic expansion valves
- Variable speed pump
- External gas cooler

Transcritical Heat Pump – T-h

Gas Cooler Design Tool in ANSYS

Coupled models of:

- Heat pump performance (mass flow, discharge T and P)
- Heat transfer (convection and multi-material conduction)
- Natural convective fluid flow in tank

Gas Cooler Design with CFD

Design cases

CO2 Coil Height

Design Improvements to Gas Cooler

Accomplishments: Progressive improvements in wrap-around gas cooler

Temperature approach at the pinch: ~10 K

Improved coil construction; improved placement with insights from CFD

Temperature approach at the pinch: ~5 K

CFD-aided design

Temperature approach at the pinch: ~2.5 K

Results

- EF of 2.1 achieved (pre-2015 TP, 135°F)
- EF_{NC} of 1.9 achieved (pre-2015 TP, 135°F)
- FHR of 73 gallons (post-2015 TP, 125°F: medium use category for UEF)

Conclusion

- More affordable path demonstrated to ENERGY STAR qualified CO₂ HPWH
- EF of 2.1 achieved with
 - Single speed compressor
 - Single expansion device
 - Wrap-around gas cooler

Characteristic	aracteristic Plate heat exchanger		Wrap-around heat exchanger	
Cost	×	High	🎺 Low	
Water fouling	×	Significant challenge	Vone	
Water pump	×	Required	Vot require	d
Additional tank water inlet/outlet ports	×	Required	Vot require	d
Performance	V	Good	EF>2.0 demonstrat	ed

