

Glad to be of service.[®]

COMBINATION BOILER RESET CONTROLLER FIELD EVALUATION

Comparing supply water temperature setpoint reset strategies

Project Background MFR Combo-Boiler Savings Opportunities

» Equipment (0.5-1 MMBtu/hr serving 40)

- Combustion Efficiency ~20%(major capital spending)
- Circulating Pump motor VFD~1 HP(limited savings)
- Controls(biggest bang for the bucks)
- Flue damper(sensitive and unit-dependent)
- Heat recovery

» System

- Piping configuration(Where HW Return is connected to the tank can make a big difference)
- Piping insulation(limited savings)
- Tank insulation(limited savings)

» O&M

Owner's attitude

Sempra Energy utility

Leak repair

.....(not credited by CPUC)

Glad to be of service.[®]

Project History – Phase 1

Technology Assessment Phase 2009-2010

- » SoCal Gas, EAC
 February 2010 Report
- A Pilot Units were tested in 2009-2010
 Shoulder and
 Summer Months

TEST LOCATIONS

- Sycamore Springs in Alta Loma
 - **240** Unit Apartment Complex
 - 20% savings in Shoulder months
 - 27% savings in Summer months

- Club Laguna in Laguna Beach
 - **421** Unit Apartment Complex
 - 26% savings in Shoulder months
 - 39% savings in Summer months

Glad to be of service.®

Project History – Phase 2

Scaled Field Placement Phase 2010-2011

2)

5)

6)

7)

8)

- » M&V Testing under "Real World" Conditions 1)
- » Nov. 2010 to Oct. 2011 ³⁾
- » 8 Apartment Complexes
- » 29 Boiler Units
- » 3 counties (in SCG territory)

TEST LOCATIONS

- Huntington Creek in Huntington Beach
- Highland Meadows in Moreno Valley
 - Redlands Lawn & Tennis in Redlands
 - Sycamore Springs in Alta Loma
- Woodland Village in Costa Mesa
- Parkwood Village in Anaheim
- The Crest in Pomona
- Mountain View Apts. in San Dimas

Scaled Field Placement Phase 2

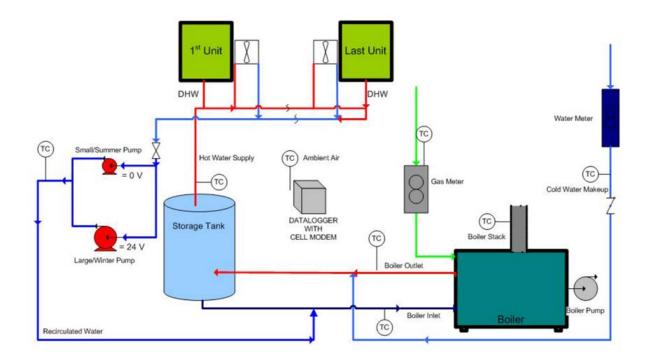
RESULTS

#	Site Name (City)	Avg. Baseline	Avg. Optimized	%	Avg. Monthly Therms	Avg. Annual Therms	Climate
		Therms per unit-day	Therms per unit-day	Saved	Saved per Apartment*	Saved per Apartment	Zone
1	Anaheim	1.23	0.84	32.0%	11.9	144.4	8
2	Costa Mesa	0.90	0.77	15.2%	4.1	50.0	6
3	Huntington Beach	1.17	1.00	14.6%	5.1	62.1	6
4	Moreno Valley	0.81	0.65	19.4%	4.7	57.0	10
5	Pomona	0.63	0.49	22.6%	4.3	52.3	9
6	Alta Loma	0.97	0.71	26.5%	7.7	93.7	10
7	Redlands	0.67	0.64	4.5%	0.9	10.9	10
8	San Dimas	1.12	0.79	29.0%	9.7	118.1	9
	VEDACE	0.94	0.69	10 10/	4.0	E0 0	
AVERAGE		0.84	0.68	19.1%	4.8	58.8	

* 30 days per month (for consistency)

Glad to be of service.®

Phase 3 – Comparison of 4 Similar Competing Products


» Multi-family condo complex in Laguna Beach, CA

Test Site Overview

» Central boilers serving DHW & HHW

Test Site Boilers

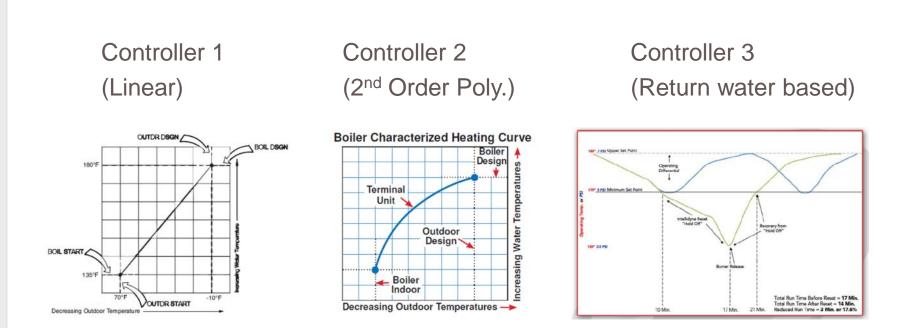
» All test site boilers have the same capacity

ID	Boiler Model	Boiler Rated Size [kBtu/hr]	Number of Serviced Condo Units
Baseline	Raypak H3-0502B	500	24
Controller 1	Raypak WH3-0502A	500	24
Controller 2	Raypak W3-0502A	500	24
Controller 3	Raypak W3-0502A	500	24
Controller 4	Raypak W3-0502A	500	23
Controller 5	Raypak WH3-0502A	500	24

Test Site Boilers

» Each heating plant includes a boiler, storage tank, and pumps

The Controllers & their Configuration

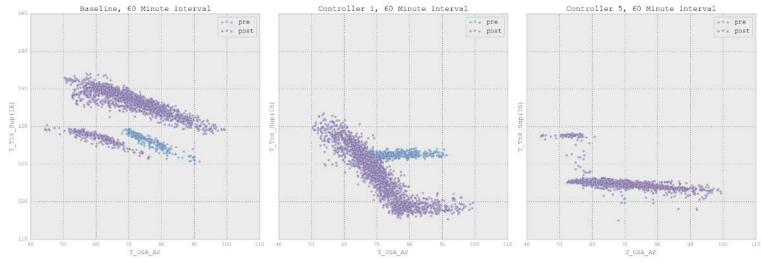

» Goal is to compare 5 setpoint reset controllers

Item	Baseline	Controller 1	Controller 2	Controller 3	Controller 4	Controller 5
Highest Allowed Tank Setpoint	130 °F	130 °F	130 °F	130 °F	130 °F	130 °F
Lowest Allowed Tank Setpoint	-	120 °F				
Corresponding High OSA Temp.	-	75 °F	75 °F	_1	_1	-
Corresponding Low OSA Temp.	-	55 °F	55 °F	_1	_1	55 °F
Algorithm	Fixed	Linear	2nd Order	_1	_1	Step

1. Return water temperature based

👗 Sempra Energy utility

Some graphs from vendor literature



Note: Some controllers are missing from this slide for the sake of brevity.

Some Preliminary Scatter Plots

- » Baseline boiler has two anomalies:
 - Unauthorized modification of the setpoint
 - Tankstat is not properly measuring water temperature
- » Controller 1 works properly (albeit pre period setpoint was too low)
- » Controller 5 works properly (albeit delta between setpoints too low)

Note: Some controllers are missing because analysis is underway.

Baseline Boiler existing tankstat

- » It's not functioning properly and we're fixing it.
- » Nevertheless, what an interesting failure mode.

Preliminary Findings

- » Temperature reset controllers function properly but require attentive configuration and monitoring
- » Conventional tankstats can have failure modes that are difficult to detect if they are not installed correctly or not calibrated
- » Choosing upper and lower allowed temperature setpoints that will maximize savings but minimize occupant complaints is critical

Next Steps

Continue to troubleshoot potential issues

2 Collect Additional Data

Calculate & compare natural gas savings

Deliver report with final results and conclusions

1

3

4