

2018 Hot Water Forum

Wednesday, March 21, 2018

Are There Savings in Lower GPM Showerheads?

Session 2C. Changes in Residential Hot Water Use and Opportunities for Savings

> Jim Lutz jdlutz@hotwaterresearch.net

Shower Standards Should Save Water

- first standards effective nationally 1994
- more stringent standards followed
- more likely to come

< 1994	~ 5.5 GPM	historical		
1994	2.5 GPM	Energy Policy Act 1992		
2010 2012 2014 2016	2.0 GPM	EPA WaterSense, New York City, Colorado, California,		
July 2018	1.8 GPM	California		
	?			

Residential End Uses of Water

Water Research Foundation

Flow trace analysis of whole house water end uses at several hundred homes. First study in 1999 and 2nd in 2011.

Data Logger in Meter Pit

Flow Trace Analysis

Average Daily Indoor Per Capita Water Use REUWS 1999 and REUWS 2016

- 21% reduction in indoor use
- number of persons per home has not changed significantly
- reductions due mainly to better efficiency toilets and clothes washers
- only small reduction in shower use

Why So Little Savings for Showers? Is it Flowrate?

Why So Little Savings for Showers? Is it Duration?

Analysis from event data.

Water Conservation Pilot Studies

- Seattle and EBMUD water conservation studies
- pre and post-retrofit conservation measures
- total water and hot water both logged
- working with detailed flow data

EBMUD Water Conservation Study

Category	Baseline (gcd)	Post- Retrofit (gcd)	Difference in Means (gcd)	% Change	t-Value	P-Value	Statistically significant difference?*
Bath	3.0	2.8	-0.2	-6.60%	0.578	0.5674	No
Clothes washer	13.9	8.8	-5.1	-36.70%	4.762	< 0.0001	Yes
Dishwasher	1.0	0.9	-0.1	-10.00%	1.86	0.072	No
Faucet	10.5	10.5	0	0.00%	0.03	0.9759	No
Shower	12.0	10.7	-1.3	-10.80%	1.959	0.0589	No
Toilet	19.9	9.8	-10.1	-50.80%	9.129	< 0.0001	Yes
Indoor	60.3	43.5	-16.8	-27.86%	7.631	< 0.0001	Yes
Other/Unknown	0.1	0.4	0.3	75.00%	-2.614	0.0004	Yes
Total	60.4	43.9	-16.5	-27.32%	7.471	< 0.0001	Yes
Avg. # of	2.56	2.52			000.024494.07		
Residents per							
household							
*95 nercent confidence l	evel						

Table 4.6 Comparison of baseline and post-retrofit per capita daily use - excluding leaks

95 percent confidence level

source: Mayer, Peter W., William B. DeOreo, Erin Towler, and David M. Lewis. "Residential Indoor Water Conservation Study: Evaluation of High Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in the East Bay Municipal Utility District Service Area." Aquacraft, Inc. Water Engineering and Management, July 2003.

Seattle Water Conservation Study

Category	Baseline (gcd)	Post- Retrofit	Difference in Means	% Change	t-Value	P-Value	Statistically significant
G-		(gcd)	(gcd)				difference?*
Bath	3.7	2.7	-1.0	-27.9%	2.443	0.0147	No
Clothes Washer	14.8	9.2	-5.6	-37.7%	5.157	< 0.0001	Yes
Dishwasher	1.4	1.2	-0.2	-13.6%	1.460	0.1446	No
Faucet	9.2	8.0	-1.2	-13.1%	3.310	0.0010	Yes
Leak	6.5	2.2	-4.3	-66.0%	9.891	< 0.0001	Yes
Shower	9.0	8.7	-0.3	-3.8%	0.740	0.4596	No
Toilet	18.8	7.9	-10.9	-58.1%	25.29	< 0.0001	Yes
Indoor	63.4	39.8	-23.6	-37.2%	13.935	< 0.0001	Yes
Other/Unknown	0.2	0.1	-0.1	-46.9%	1.570	0.1166	No
Total	63.6	39.9	-23.7	-37.2%	13.927	< 0.0001	Yes
Avg. # of	2.54	2.51					
Residents per							
household							

Table 3.3 Mean indoor per capita water use, baseline and post-retrofit

*99 percent confidence level

source: Mayer, Peter W., William B. DeOreo, and David M. Lewis. "Seattle Home Water Conservation Study: The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes." Aquacraft, Inc. Water Engineering and Management, December 2000.

Using Flow Data to Examine Showering

- developing algorithm to separate clearing and showering draws
- pre-retrofit to post-retrofit changes?
- showering draws
 - duration
 - flow rate
- clearing draws
 - volume

Example Shower Interval Data

shower water flows for house 13431

date = Wed 1999-10-27

Example Shower Interval Data

shower water flows for house 13431

date = Wed 1999-10-27

Devilish Details

shower water flows for house 13431

date = Sun 1999-11-07

Devilish Details

shower water flows for house 13431

date = Mon 1999-11-08

Devilish Details

shower water flows for house 13431

date = Sun 1999-10-31

Next Steps

- Refine algorithm to calculate
 - showering duration and flow rate
 - clearing duration and volume
- Apply to as many shower events as possible
- Compare pre- and post-retrofit
 - in aggregate
 - by household
- Apply to REUWS datasets?
- Other?