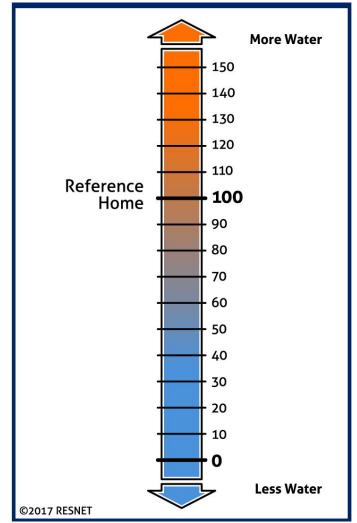
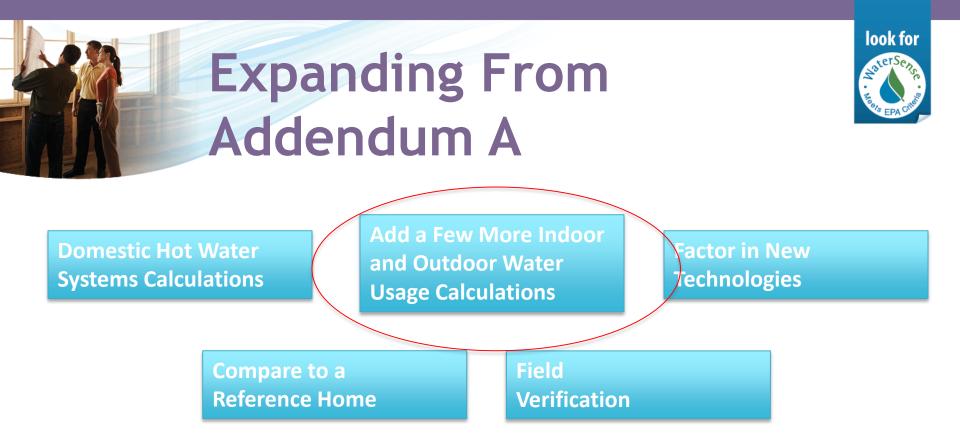


Measuring Hot Water Use With HERS_{H20}


Hot Water Forum March, 2018


Jonah Schein | EPA WaterSense

Key Objectives for HERS_{H20}

- Nationwide applicability
- Suitable for both new and existing homes
- Encompasses both indoor and outdoor water efficiency
- Practical and affordable to administer
- Scores usable for quantitative comparison

RESNET's Whole House Water Efficiency Rating System

From Addendum A to HERS_{H20}

- Split use of hot water using faucets into showerheads and faucets, and then again kitchen and faucet use
 - Removes showers from the total based on REUWS I & II data
 - 69% to the kitchen, 31% to lavatory based on analysis of REUWS I data
- Allows users to impact each end use separately
 - Addendum A treats efficiency as binary, you're "low-flow" or you're not, HERS_{H2O} maintains the binary method for lav faucets only
- Will ultimately allow the incorporation of technologies like grey water

Moving Toward Whole House Water Use

look for

- Added toilet water use
 - Based on REUWS I and II data and EPACT federal standards
- Adjusts ("penalizes") homes for excess pressure
 - Can be adjusted with the use pressure compensating fixtures
- Adds water softener use
 - Is added to both the reference and rated homes in locations that demonstrate hard water
- Outdoor water use

- We are rich in energy and building data
 - International Energy Conservation Code (IECC) provides a baseline for energy consumption in residential new construction
 - Residential Energy Consumption Survey (RECS) provide detailed end use information on a regular basis
 - American Housing Survey (AHS) provides additional data on the make up of the national building stock
- The best source of field data for outdoor water use is the Residential End Uses of Water Study (REUWS II)
 - Original REUWS study published in 1999
 - Revision published in 2016

- REUWS includes predictive methods for estimating outdoor water use that includes terms for:
 - Ln(irrigated area +1)
 - Ln(Net ET)
 - Cost of water
 - Indicator for in-ground sprinkler systems
 - Indicator for presence of swimming pools
- When we take cost of water out, the model starts to behave erratically

Outdoor residential water use is primarily a behavioral issue and we need to consider factors as to how they impact this behavior

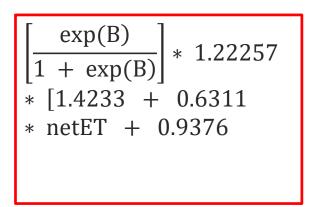
- This seems obvious, but is actual counter to traditional methods of estimating outdoor water use
 - Typically based on the biological needs of plants
- Actual very similar to how addendum A works
 - the showerhead doesn't know what 105° F
 - Doesn't know when to turn off and on
- Makes homes with and without automatic irrigation fundamentally different
 - Models of use become stronger with more automation

Splitting the methodology for homes with and without an automatic irrigation systems, we get

$$\begin{bmatrix} exp(A) \\ 1 + exp(A) \end{bmatrix} * 1.18086 \\ * [2.0341 * netET^{0.7154} \\ * Ref_Irr_Area^{0.6227} + 0.5756 * ind_Pool$$

$$\left[\frac{\exp(B)}{1 + \exp(B)}\right] * 1.22257$$

* [1.4233 + 0.6311 * netET + 0.9376



• What the equation is really saying is:

 $\left[\frac{exp(A)}{1 + exp(A)}\right]$ * 1.18086 $* [2.0341 * netET^{0.7154}]$ * Irr_Area^{0.6227} + 0.5756 * ind Pool

Water use in landscapes with automatic irrigation are a function of

- Size
- Climate(ET)
- Presence or absence of a pool.

Water use in landscapes w/out automatic irrigation are a function of

- Size
- Climate (ET)
- Presence or absence of a pool

Indoor Rated Water Use

Will respond to:

- More efficient plumbing products
- Efficient Appliances
- More efficient plumbing distribution

Normalized for:

- Climate
- Size of house & predicted occupancy

Outdoor Rated Water Use

Will respond to:

- Smaller landscapes (the reference landscape is fixed based on lot size)
- More efficient irrigation technology
 - Smart controllers
 - More efficient emitters (through a flow intensity calculation called RICI)
 - Proper commissioning by a trained professional

Normalized for:

Climate

Implementing HERS_{H20}

Who's RESNET?

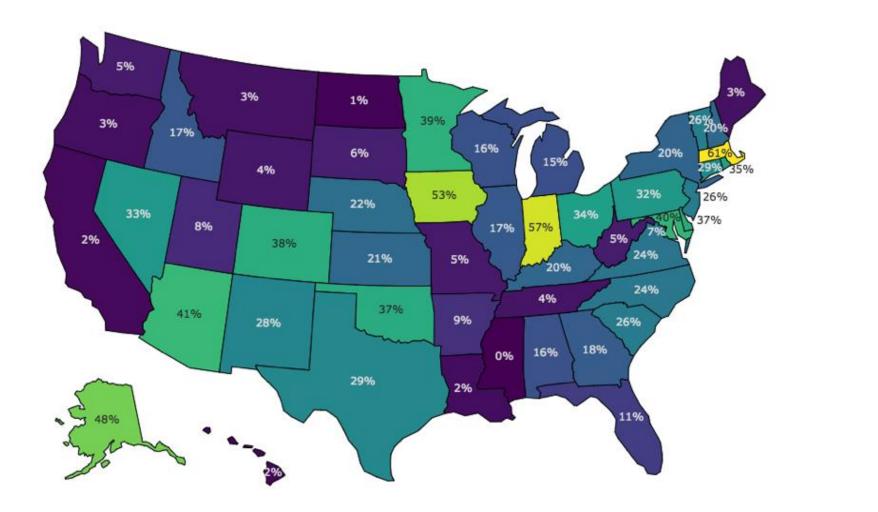
- An industry-based, not for profit organization
- A national standards making body for building energy efficiency rating and certification systems in the USA (ANSI Accredited Standards Development Organization)
 - Consensus based standard development and amendment process
 - Transparent review and adoption process Formal public review and comment process

Using RESNET's Infrastructure

- More than 2 million homes have received a HERS rating
- Multiple approved software vendors
 - Established process for approving and validatin changes
- There are almost 2,000 certified HERS raters
 - Rigorous 40-hour course with national written and practical assessments
 - Apprentice-style probationary period for conducting a minimum of 5 ratings
 - Professional Development requirements to maintain certification
 - Contract with a RESNET Quality Assurance Provider

look for What do raters do for energy? What can they do for water? Pre-drywall inspections for insulation, Energy efficiency plan reviews envelope air sealing, duct insulation and sealing and verification of window U-values and SHGC Building envelope leakage testing

Duct leakage testing



Verification of compliance with the IECC **Energy Rating Index Compliance Path**

> Energy modeling to determine HERS Index Score and estimated energy usage

Water Efficiency **Ratings...coming soon!**

Share of New Homes Receiving HERS Ratings

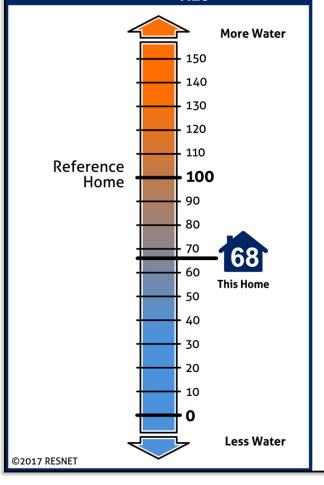
%

0.6

0.5

0.4

0.3


0.2

0.1

Measures Water Efficiency Improvements

RESNET HERS_{H20} Index

Water efficiency rating certificate for:

100 Sunshine Dr. Irvine, CA 90000

1980
3
5000
2000

sq. ft. sq. ft. sq. ft.

This Home, Compared to the Reference Home

(Reference home is similarly sized, at same location, with attributes typical of a 2006 home)

more water

32% 34,080

efficient

gallons of water annual savings

\$175

annual saving on water utility bills

Rated by:

Date: January 19, 2018

Justin Miller Efficiency Unlimited Santa Ana, CA 90000

What This Means to Builders

KB ENERGY PERFORMANCE GUIDE Copperleaf The Maston Plan SIZED. RESALE HOM Actual energy consumption and costs will vary

ESTIMATED ANNUAL SAVINGS = \$1,524"

Adding water savings to this

- Lets an efficient builder further differentiate themselves on cost savings
- Quantifies the homes impact on water resources
- Clearly communicates that
 this home is differed
 - Better is better

- Finalize ANSI standard (RESNET/ICC 1100)
- Pilot HERSH2O Guidelines
- Develop training and quality assurance process for raters
 - Add procedures for non-raters

Thank You!

Jonah Schein | <u>Schein.Jonah@epa.gov</u>

RESNET Contact: Ryan Meres, Program Director <u>ryan@resnet.us</u> 760-681-2391