Evaluating Health and Economic Benefits of Clean Energy Programs

Ingrid Malmgren December 7, 2015

Beyond Energy Savings?

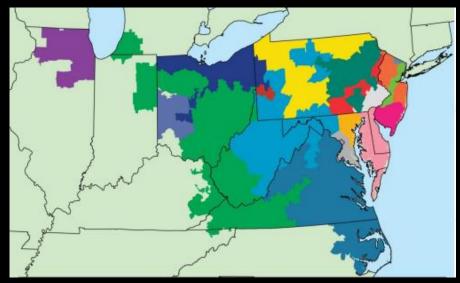
Why do Co-Benefits Matter?

The Challenge

Quantification

- Computational
- Participant Surveys
- Statistical Analysis of Revealed Preferences
- Existing Research-other jurisdictions
- Percent Adder

Incorporating these Values


Adapted from Skumatz Report for NRDC/State of Maryland March, 31, 2014

Research Goal

Identify kWh values in existing research and economic analyses for:

- Health Benefits
- Economic Development / Job Creation

Map Source: cleantechnica.com

Health Impacts from Reduced Emissions

Installed PV Capacity (GW)	5	10	70	100
Cases Reduced				
Mortality	22	49	300	437
Chronic Bronchitis	15	34	206	300
Heart Attacks	36	81	493	717
Hospital Admissions-Respiratory				
Chronic Lung, less Asthma (20-64)	1	2	14	21
Asthma (0-64)	2	4	25	36
Pneumonia (65+)	7	17	102	148
Chronic Lung (65+)	1	2	13	18
Total	11	25	153	223
Hospital Admissions - Cardiovascular				
All Cardiovascular (20-64)	4	8	51	74
All Cardiovascular (65+)	5	12	73	106
Total	9	20	124	180
Emergency Room Visits for Asthma	24	53	324	471
Acute Bronchitis	35	78	479	697
Lower Respiratory Symptoms	397	894	5,462	7,945
Upper Respiratory Symptoms	319	718	4,387	6,381
Work Loss Days	2,538	5,710	34,894	50,755
Minor Restricted Activity Days	17,439	39,239	239,791	348,787

National Renewable Energy Laboratory, 2007. "Energy, Economic and Environmental Benefits of the Solar America Initiative" S. Grover ECONorthwest, Portland, Oregon.

Quantified Health Benefits of Reduced Fossil Fuel Generation

Estimated Cost of Health Impacts

Fuel Type	2012 PJM Marginal Generation	Machol and Rizk 2013	National Research Council (2010)	Epstein et al. 2011		
Coal	58%	32¢/kWh	3.2¢/kWh	14¢/kWh		
Natural gas	30%	2¢/kWh	.16¢/kWh	-		
Oil	6%	13¢/kWh	-	-		
Weighted average		20¢/kWh	2¢/kWh	-		
Mid-Range Value	11¢/kWh					

All values presented in 2013 \$.

2012 Marginal Fuel Type Mix Table 2-16, page 62 of the 2012 State of the Market Report from PJM, Volume 2: Detailed Analysis, March 14, 2013, by Monitoring Analytics, LLC, Independent Market Monitor for PJM. From Memorandum from Tetra Tech to VEIC dated October 14, 2014.
Includes SO₂, NO_x, and PM emissions.

[4] National Academy of Sciences (2009). http://dels.nas.edu/resources/static-assets/materials-based-on-reports/reports-in-

brief/hidden_costs_of_energy_Final.pdf

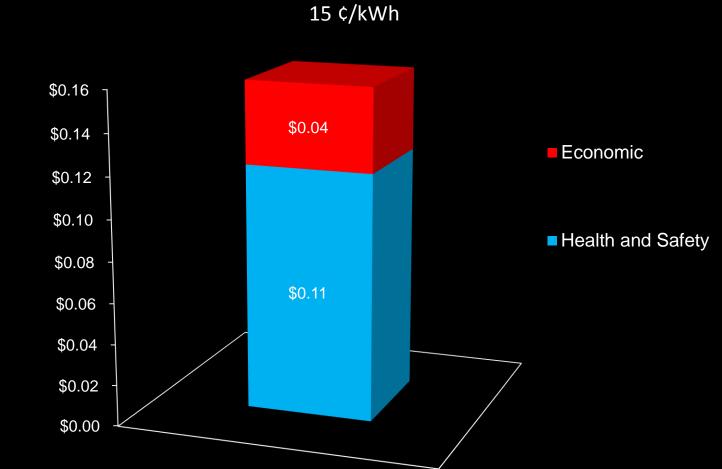
¹¹ Paul R. Epstein, et al. 2011. Full cost accounting for the life cycle of coal in "Ecological Economics Reviews."

Evaluating Health and Economic Benefits of Clean Energy Programs

Economic Benefits of Clean Energy

Energy Source	Direct job creation	Direct+ Indirect job creation	Direct+ Indirect+ Induced job creation				
	(# of jobs per \$1 million in output)						
Oil And Natural Gas	0.8	3.7 5.2					
Coal	1.9	4.9	6.9				
Solar	5.4	9.8	13.7				
Building retrofits	7.0	11.9	16.7				
Mass Transit/ Freight Rail	11.0	15.9	22.3				

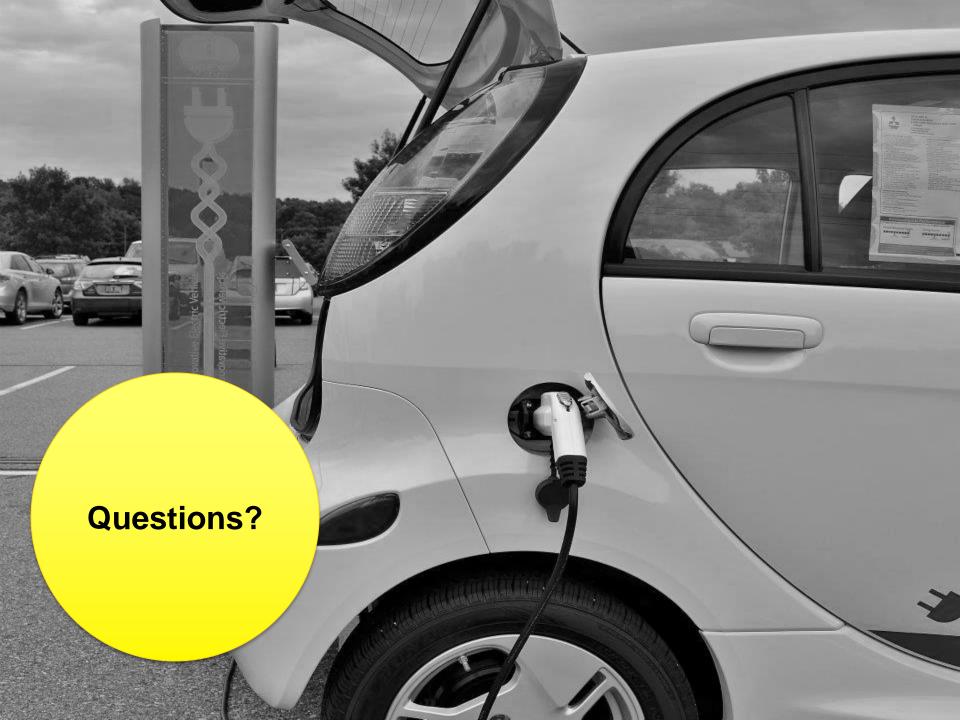
Source: Pollin, Robert, Heintz, James and Garrett-Peltier, Heidi. "The Economic Benefits of Investing in Clean Energy", Political Economy Research Institute, Center for American Progress. June 2009 p.28-29.


Value of Distributed Solar Electric Generation by Location

Category			Value (¢/kWh)								
	-	-		Philadelphia, PA	Jamesburg, NY	Newark, NJ	Atlantic City, NJ	ME	NY	MA	СТ
Fuel cost savings	4.1	4.1	4.1	3.8	4.2	3.9	4.1	8.1			
O&M cost savings	2.0	2.0	2.0	1.8	2.1	1.9	2.0				
Security enhancement value	2.3	2.3	2.3	2.2	2.3	2.2	2.2		2.5		
Long-term societal value	2.8	2.9	2.9	2.7	2.8	2.8	2.8		3.5		
Fuel price hedge value	3.1	4.2	4.2	4.7	2.4	4.4	2.5	3.7	4.0		
Generation capacity value	2.2	1.6	1.7	2.2	1.9	2.6	1.8	4.0			
T&D capacity Value	0.6	0.1	0.1	0.3	0.1	0.8	0.2	1.6	6.0		
Market price reduction value	3.5	6.7	6.9	5.4	5.2	5.1	5.4	6.6			
Environmental value	5.4	5.5	5.5	5.2	2.3	2.2	2.3	9.5	4.5	6.5	6.6
Economic development value	4.4	4.5	4.5	4.2	4.5	4.4	4.5		3+		
(Solar penetration cost)	2.3	-2.3	-2.3	-2.2	-2.3	-2.2	-2.3	0.5	2.5		
Total Value	29.0	29.0	29.0	29.0	29.0	29.0	29.0	33.7		24.3	22.6

Sources: Perez et al., Maine PUC, Acadia Center

Proposed Adder


Value /kWh

Next Steps

Thank You

Ingrid Malmgren

