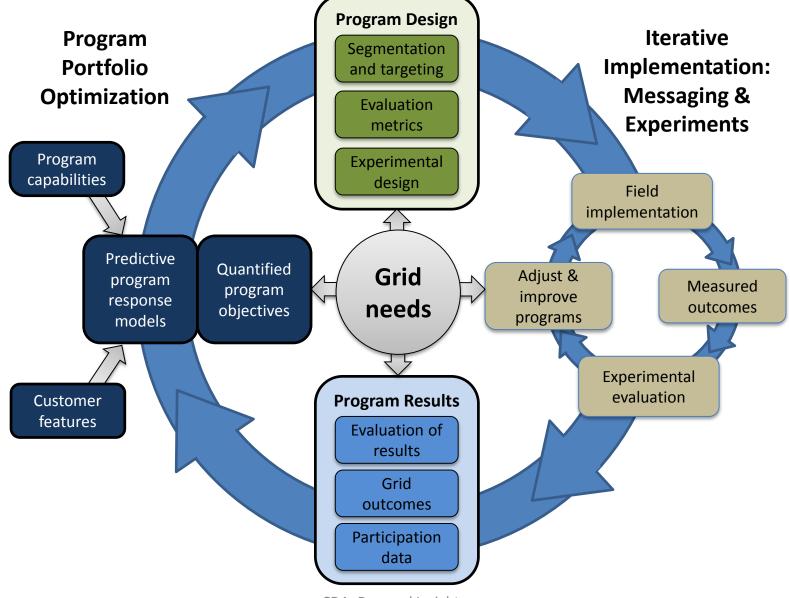


Demand Insights from AMI data

Reno

n Francisco

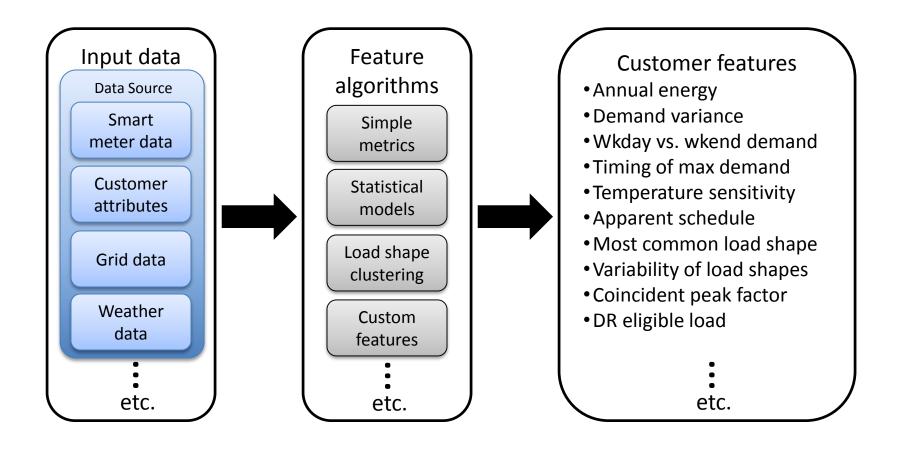
Sam Borgeson, PhD Stanford Sustainable Systems Lab Convergence Data Analytics sam@convergenceda.com

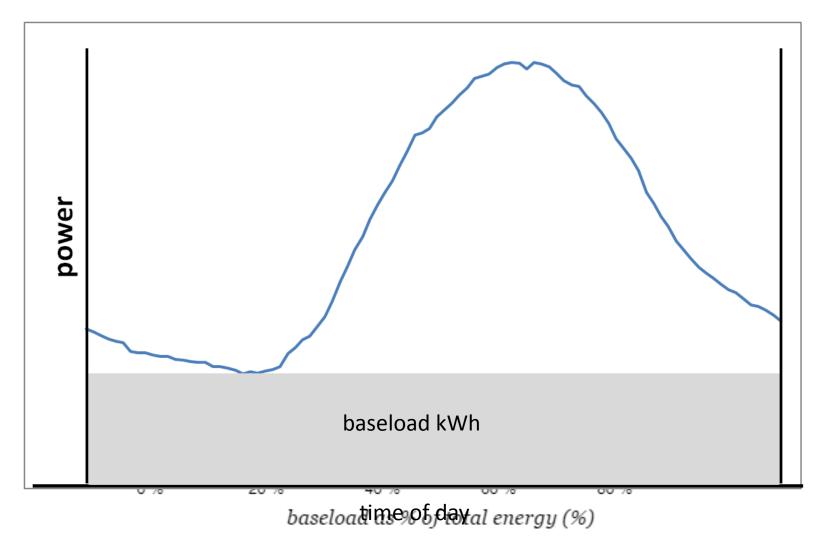

Problem statement

- The grid has evolved without the benefit of a detailed understanding of patterns or determinants of customer consumption
 - Demand is taken as a given and infrastructure is planned and operated accordingly
- In the 21st century, the grid will need to integrate and manage unprecedented levels of renewable and distributed generation
 - This will require fundamental changes to planning and operations supported by flexible demand

Our work

- Convergence Data Analyics builds tools that use machine learning and statistical models to uncover patterns and determinants of demand and realize opportunities for demand flexibility.
 - Flexible Demand: Smart Efficiency and Demand Response
 - Learn customer characteristics from demand data
 - Customer segmentation and targeting based on consumption
 - Data driven evaluation, response modeling, and iterative learning
 - Distribution planning and operations
 - Understanding customer diversity and aggregate behavior
 - Matching intermittent generation with flexible loads and storage
 - Aligning flexible demand with grid needs


Flexible Demand: Big Picture

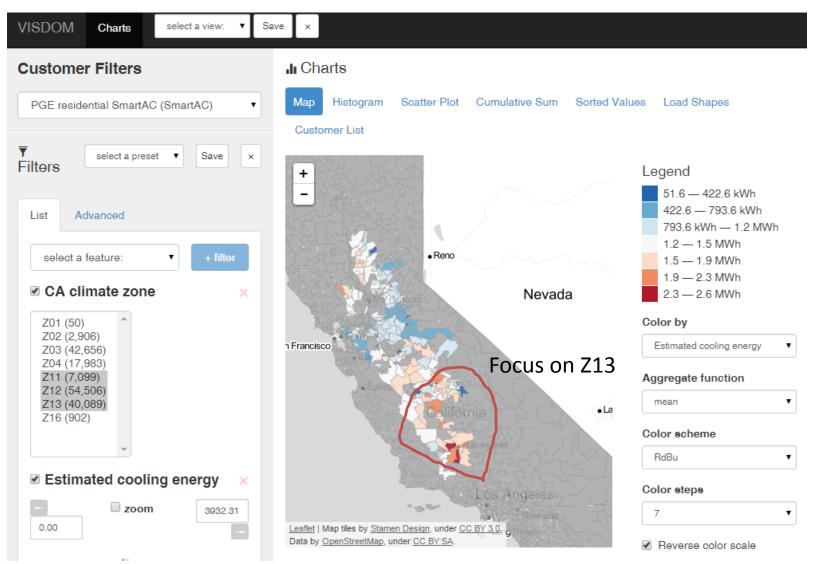

Open platforms

- Algorithmic supremacy is not the right goal
 - All approaches have strengths and weaknesses
 - In practice, there is not much difference in power/fit between well implemented methods
- To thrive, the intelligent efficiency industry needs to earn the trust of regulators and customers
 - We cannot learn or innovate without trying things that do not work
 - Better separate fact & fiction on what can be learned using meter data
- We are open sourcing all of our tools (VISDOM for R and the Python-based Demand Insight Engine) and subjecting our algorithms to peer review
 - Building community & best practices on efficient, scalable, and repeatable analyses
 - We focus on adoption: enabling utilities and EE/DR pros to learn from data; lifting the veil of mystery from the analysis

Demand feature engine

Ex: Baseload

Customer demand feature matrix


Cust id	Location code	Coincident peak factor	DR eligible load	Coincident peak load	•••	Temp sensitivity	Load shape variability
1	J-02-03	1.2	100 kW	400 kW		1.1 kW/°F	2.1
2	J-02-03	1.1	5 kW	200 kW		0.01kW/°F	5.6
:	:	:	:	·	:	:	:
250000	S-01-04	1.3	10 kW	50 kW		0.5 kW/°F	3.2

- Uses data features to provide search engine for customer behaviors.
 - Filter
 - Visualize
 - Interact
 - Export

Ex: Segmentation and targeting

- Define desired program participant profiles in terms of feature values
- Example: HVAC DR Control Program
 - Target geography
 - High cooling consumption
 - Load shape peak during grid stress
 - Low load shape variability

HVAC: Find cooling loads

Z13: cooling

• Quite a bit of diversity across households

VISDOM Charts select a view:	ve x
Customer Filters	II Charts
PGE residential SmartAC (SmartAC)	Map Histogram Scatter Plot Cumulative Sum Sorted Values Load Shapes
	Customer List
▼ select a preset ▼ Save ×	1,000 X axis
	Estimated cooling energy
List Advanced	Bins
	000 100
select a feature:	THE Cumulative
	400 Show area
Z01 (50)	200
Z02 (2,906) Z03 (42,656)	
Z04 (17,983)	
Z11 (7,099) Z12 (54,506)	2.0 MWh 4.0 MWh 0.0 MWh 8.0 MWh Estimated cooling energy (kWh)

Z13: evening peaking customers

VISDOM Charts	select a view: ▼	Save ×			
Customer Filters		L Charts			
PGE residential SmartAC (SmartAC)		Map Histogram Customer List	Scatter Plot Cumulat	ive Sum Sorted Valu	Load Shapes
Filtors	s V Save x	3.1% / 3,253 1 5.4% / 140.2 kWh	3% / 3,141 2 4.7% / 121.7 kWh	2.6% / 2,698 3 4.4% / 114.9 kWh	Sort by kwh
List Advanced select a feature:	▼ + filter			$\int $	Shape count 9 The number of shapes to show
CA climate zou Z01 (50) Z02 (2,906) Z03 (42,656) Z04 (17,983) Z11 (7,099) Z12 (54,506)	ne ×	4.2% / 4,392 4 3.5% / 91.3 kWh	2.1% / 2,182 5 3.4% / 87.5 kWh	3% / 3,128 6 2.6% / 67.1 kWh	Categories day peak 6% 6% double peak (day,eve) 2% 2%
Z13 (40,089) Z16 (902) ✓ Estimated cod		2.3% / 2,380 7 2.6% / 66.2 kWh	3% / 3,155 8 2.4% / 62.2 kWh	1.7% / 1,756 9 2.2% / 58.0 kWh	double peak (eve,night) 2% 1% double peak (morn,eve) 9% 12% evening peak 73% 67%

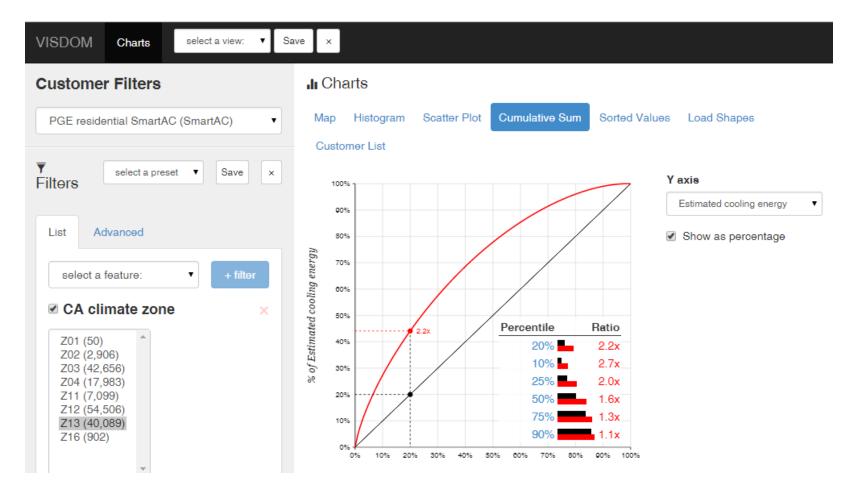
Z13: Export targeted customer data

VISDOM Charts select a view:	▼ Save ×				
Customer Filters	II Charts	;			
PGE residential SmartAC (SmartAC)	Map Hit Customer		ər Plot Cu	umulative Sum Sorted V	/alues Load Shapes
Filters select a pres V Save ×	Download C	SV	Display Column		
	index	id	zip5	cooling_energy	Estimated cooling energy
	127111	7617114478	93306	26329.0696013057	
List Advanced	61433	4015959140	93306	21919.4481361054	first n rows
	129305	7723230105	93263	21289.3594088718	100
select a feature: 🔻 + filter	108972	7073874605	93312	20875.0921950739	
	97718	6717917605	93306	19354.9314223031	Ascending?
✓ CA climate zone ×	96705	6691515905	93311	17404.101966676	
Z01 (50)	97759	6719322905	93308	16623.813530485	
Z02 (2,906)	97841	6723541105	93309	16297.2294800161	
Z03 (42,656)	95784	6662037505	93313	16266.7745893401	
Z04 (17,983) Z11 (7,099)	95106	6639382505	93309	15756.5722925792	
Z12 (54,506)	94156	6608102305	93309	15516.88360955	
Z13 (40,089)	112321	7178912405	93304	14960.0756223367	
Z16 (902)	91883	6537949405	93313	14786.8639016858	
	88078	6400624505	93309	14705.7883764545	
	00400	0001001710	00001		

Thank You

Convergence Data Analytics, LLC

Actionable insights from customer meter data. www.convergenceda.com


How can we help put your data to work?

Sam Borgeson sam@convergenceda.com

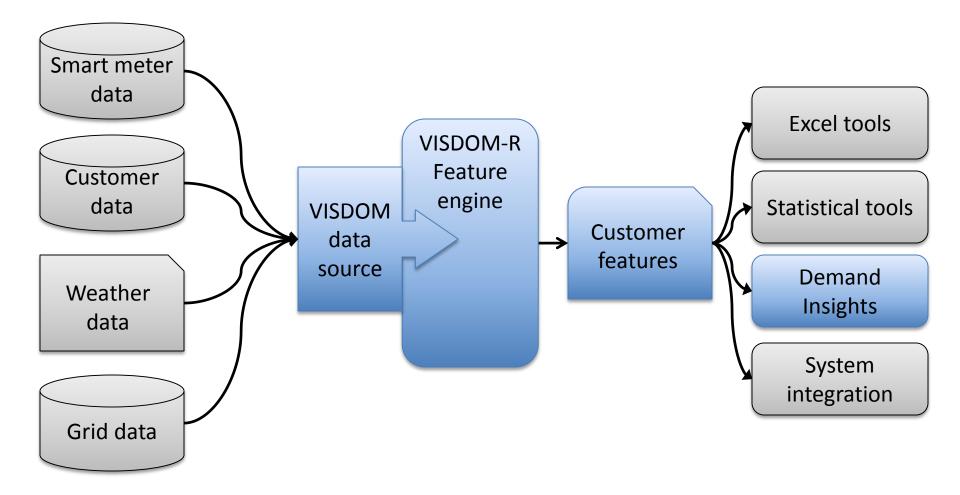
CDA: Demand Insights

Z13: top users

• Top 20% of customers use >45% of cooling

The payoff

Final output is a ranked list of customers ordered by priority based on customized targeting criteria:


- 1. Geography (hot climate zone)
- 2. Timing of peak demand (early evening peaks)
- 3. Household cooling loads (biggest AC users)
- 4. Other program-relevant customer attributes
 - Income and equity impacts of program
 - Past program participation and outcomes
 - Special inclusion or exclusion categories
 - etc.

Program benefits

Energy programs should be designed and implemented using energy data!

- Identify and eliminate free riders from the beginning
- Improved program cost effectiveness
 - 4x expected program response compared to untargeted customers (2x compared to best practice geographic targeting) for the same total customer acquisition costs
- More focused messaging to recruit each customer
 - Personalized information based on energy usage attributes
 - Greater likelihood of enrollment
- Use customer metrics to evaluate program outcomes

VISDOM Structure

