

Maximizing the Utility Value of Distributed Energy Resources

www.integralanalytics.com

INTEGRAL ANALYTICS COMPANY PROFILE

INTEGRAL ANALYTICS | 2015

LOCATION MATTERS

GRANULARITY INCREASES BENEFITS

Granular Analysis	\$ 1,696,177
Traditional Analysis	\$ 298,355
% Difference	469%

Traditional Analysis undervalues due to:

- Ignoring multiple year weather/ micro climates
- Not addressing changing peak coincidence over time
- Under-valuing the covariance between price and load
- Ignoring forward price uncertainty
- Not forecasting circuit peak loads
- Over-averaging avoided T&D
- Ignoring the customer specific capacity cost to serve
- Ignoring avoided costs between the substation and the customer location
- Targeting which ignores free ridership potential

Distributed Marginal Costs

COST TO SERVE AT GRID EDGE

	Grid Side	Supply Side
Variable Costs	Voltage KVAR Power Factor Line Losses Limiting Factors	Ancillary Services Plant Following Wind/ Cloud Firming Current hour LMP
Fixed Costs / Capacity	Asset Protection Circuit Capacity Deferral Bank Capacity Deferral Future Congestion (Trans)	Capacity Premium 10 Year LMP Forecasts Future Covariance

Load Forecasts

WHERE WILL GRID BE CONSTRAINED?

INTEGRAL ANALYTICS | 2015

LONG-TERM FORECAST

Triangulate with 3 long-term forecasts approaches

- 1. Spatial Forecast
 - 30 years of satellite data into GIS
 - historical growth,
 - regression modeling on known patterns of past growth,
 - multiplier effects across industries.
- 2. Corporate Forecast allocated by MWh
 - Using customer billing data or equivalent
 - Econometric forecast for up to 100 variables, 20 weather variables,
 - Adjusted via circuit load factor, post hoc.
- 3. Circuit Peak Load Forecast
 - Based on historic peaks
 - Regression analysis using potentially 100 economic variables and 20 weather variables
 - Modelled over 30 weather years

SPATIAL LOAD FORECASTS

 $\mathbf{0}$

Customer Locations / Per Capita Growth Demand Side Management / Load Control Optimal Solar/Storage Sites Plug-in Electric Vehicle Penetration Transportation Infrastructure

Future Land Use/Econometric Growth

50

INTEGRAL ANALYTICS | 2015

Edit Forecast: Franklin / Canyon Substation A/8671112

Forecast for: 8671112

	2014	2015	2016
Projected load (Amps)	410	416	418
Surplus / Deficiency (Amps)	8	2	0
Percent loaded	98%	100%	100%

	3-Day W
Corporate	Income:
Spatial Growth: 0.79 (High) Adjusted R Square: 0.9 (High)	Employr
Final forecast: 100% Corporate, 0% F Recommended: 49% Corporate, 51% F	Regression Regression

Blend

Variable	Coefficient
3-Day Weighted-Avg High Temperature	0.202533
Income: Total Personal, (Mil. \$)	0.000229
Employment: Service Sector/Full or Part Ti	0.022601

Before Projects

OK

Cancel

Logout

After Projects

Model

Chart:

Load (Amps) 420

520 500

480 460 440

Edit Forecast: Franklin / Canyon Substation A/8671112

After Projects

×

Forecast for: 8671112 Results Load Forecast Ŧ 🔶 Net Historical 🛛 Regression 💠 1 in 10 🛑 Corporate 🔢 1 in 10 🛑 Final 🛄 1 in 10 📒 Capacity Adding Solar PV 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Year Regression

Blend

	2014	2015	2016
Projected load (Amps)	410	416	380
Surplus / Deficiency (Amps)	8	2	38
Percent loaded	98%	100%	91%

Adjusted R Square: 0.88 (High)	(and bio
Augustean equate. 6.66 (righ)	3-Day W
Corporate	Income:
Spatial Growth: 0.79 (High) Adjusted R Square: 0.9 (High)	Employr
Final forecast: 100% Corporate, 0% Recommended: 49% Corporate, 51%	Regression

Regression coefficients:

2018

2019

2020

2021

2022

2023

Before Projects

OK

Cancel

Limiting Factors

LIMITING FACTORS: GRID CONSTRAINTS POWERFLOW LEADS DER OPTIMIZATION

@ Service Transformer
Blue < 116V
Red = Overloaded

INTEGRAL ANALYTICS | 2015

INTEGRAL ANALYTICS

DMC Signal

CHOREOGRAPHY OF DERS

Voltage Improves, Asset Protected

IA only needs 25%-40% customer participation to levelize load, which saves utility money and does not force customers to participate.

Bumps intentional to limit the extent that AC units are started/stopped, and to optimize on customer marginal costs, not just on load alone.

Loads are flat enough to observe improved voltages and protects the service transformer

Six transformers, 30 homes, displaying normal volatility in load prior to IA vs. after optimizations are operational.

Distributed Marginal Costs

DISTRIBUTED MARGINAL COSTS (DMC)

		Grid Side Supply Side						
		AMI Data	Smart Inverters	Zigbee	Dynamic Dispatch	Arbitraging DERs		
Variable Costs	Model Sensors	P Lir	Voltage KVAR ower Factor Line Losses niting Factor	3	Ancilla Plant Wind/ C Currer	ary Services Following Loud Firming It hour LMP	Tin	ne <i>Minutes</i> Hours
Fixed Costs / Capacity	Satellite Data CYME Data/	As: Circuit Bank (Future	set Protectio : Capacity Def Capacity Def Congestion (n ^f erral erral Trans)	Capaci 10 Year I Future	ty Premium MP Forecasts Covariance		Months Years

DMC is the actual Cost to Serve, and can be used in non ISO markets as well.

Optimize DER

LOCATIONS CLOSELY CORRELATE TO DISTRIBUTED MARGINAL COST DAILY DMC (\$\$ COSTS AVOIDED) DRIVE LOCATION/MAGNITUDE

LESSONS LEARNED IN CA

- Reliability is goal one
- Hosting maps are needed to streamline PV/DER interconnection
 - Requires 10 year nodal forecasts
 - Proportionally spreading load change doesn't work
- Each utility has different operational needs, so policies/methods differ.
- Multiple forecasts required to mitigate risk
 - Minimum day shapes
 - Monthly net shape migration.
- 10 year forecasts and DER hosting technical limits are paramount
 - Need these before discussing market signals.

Summary

DER REQUIRE GRANULAR ANALYSIS

- 1. Determine capacity deferral value by location
- 2. Quantify power flow benefits/risks of DER
- 3. Capture variable supply side benefits like supply following
- 4. Forecast circuit peak loads
- 5. Avoid over-averaging avoided T&D
- 6. Calculate the customer specific capacity cost to serve
- 7. Capture avoided costs between the substation and the customer location

Need Granular analysis to capture FULL benefits of DER at the edge of the grid.

CONTACT INFORMATION

Bill Kallock Vice President, Grid Analytics 513.549.7038

bill.kallock@integralanalytics.com

INTEGRAL ANALYTICS | 2015