

Intelligent Efficiency Conference

Track A: Integrating Distributed Resources

1A Enabling the Virtual Power Plant

Andrew Machado, Cadmus
Supporting the Virtual Power Plant

Agenda

Background

Technology & Infrastructure Review

Regulation Overview & Impacts

Key Take-Aways

CADMUS

Sinc

Energy and environmental consulting firm with over 520 employees

Leaders in EM&V approach and methods: DOE's UMP, **IPMVP**

Specialize in Energy Systems Engineering, Emerging Technology, EM&V

33 years serving

Utilities, Commercial & Industrial Customers, Government

- **Experts on DSM policy** and planning, costeffectiveness, and
 - market effects analysis

Understand regulatory environment underlying power planning methods

IoT, Smart Grid, HEMS

- Internet of Things (IOT)

 network connectivity
 for objects (and not just people)
- Advanced Metering
 Infrastructure (AMI)
 – utility meter with two
 way communications
- Open Systems
 Interconnection (OSI)
 model framework for
 communication over a
 network
- Home Energy
 Management System
 (HEMS)
- Home Area Network (HAN)

Source:

http://gargasz.info/how_internet_works_i_think.pdf

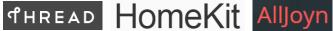
Networking & Data

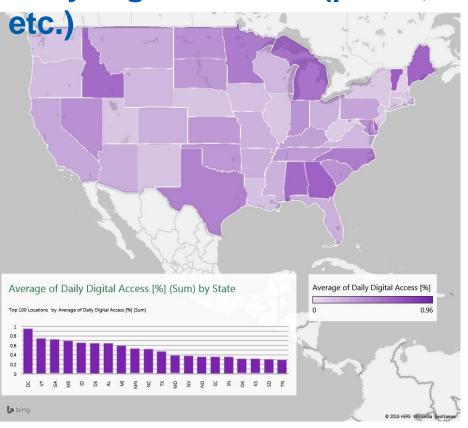
Protocol - set of rules for communication between two devices (e.g., Bluetooth)

Standard - adopted guidelines for communication (which often reference specific protocols, e.g., 802.11n)

Green Button – DOE initiative for customer energy data access

Latency – network transit time

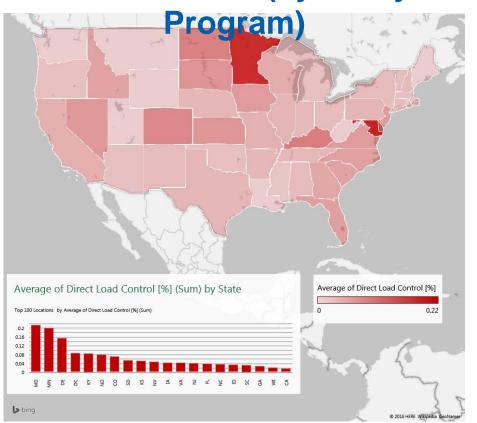


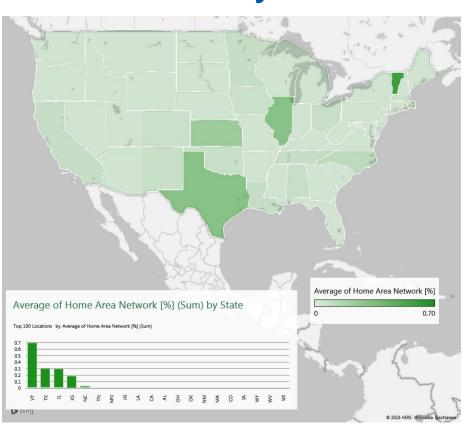

Cellular (GSM, CDMA)

2015 Smart Meters & Energy Data

AMI Meter

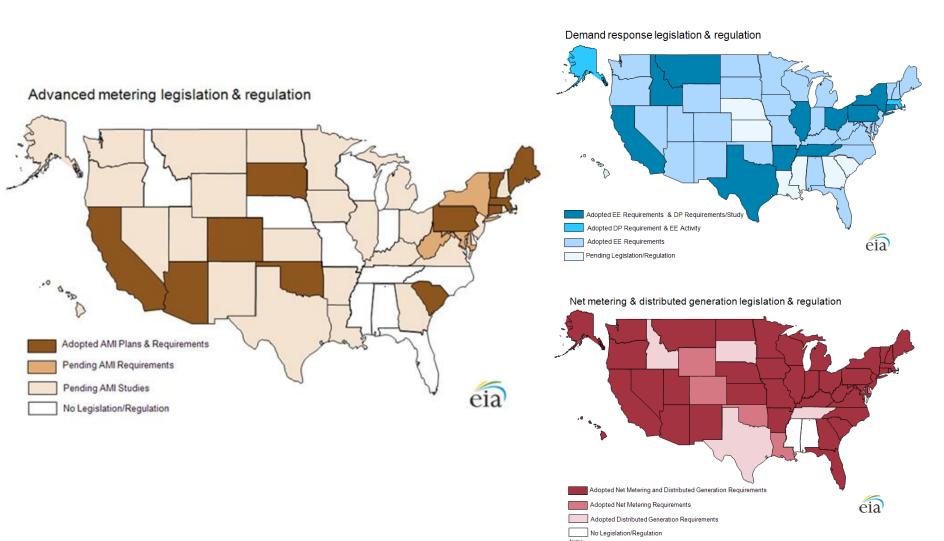
Average of AMI Meter Penetration [%] (Sum) by State Average of AMI Meter Penetration [%] Top 100 Locations by Average of AMI Meter Penetration [%] (Sum) 0.000482489896397683 bing


Daily Digital Access (portal,


Source: U.S. Energy Information Administration (EIA)

2015 Load Control & Local Network

Load Control (by Utility



HAN Gateway Enabled

Source: U.S. Energy Information Administration (FIA)

Regulation Overview

Source: U.S. Energy Information Administration

Regulation Impacts

British Columbia, Canada (100% AMI)

- 1.9 million smart meters, 100% IPv6
- BC Energy Plan and Clean Energy Act mandated 100% AMI by 2012
- Vision for Multiservice Grid Network

Maine (91% AMI)

- 820,000 customers statewide
- \$96 million in Smart Grid Investment Grants (American Recovery & Reinvestment Act)

California (82% AMI)

- 12.5 million AMI meters statewide out of 15.2 million total meters
- San Diego Gas & Electric awarded \$28 million in SGIG / ARRA funds; Sacramento Municipal Utility District awarded \$127 million
- Widespread implementation of Green Button initiatives
- Commission funded Pacific Gas & Electric HAN pilot in 2013, ~5000 customers

Illinois (38% AMI)

- Largest relative increase (>20%) in AMI penetration from 2014-2015
- Energy Infrastructure Modernization Act (EIMA) of 2011
- Ameren Illinois investing in IoT infrastructure & testing
- Offering HAN integration, vetting technology

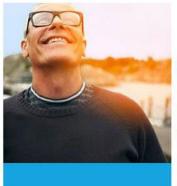
Wisconsin (24% AMI)

- Heterogeneous mix (>90 utilities)
- Madison Gas & Electric awarded \$5 million in SGIG / ARRA funds
- No major regulation regarding AMI / IoT

Indiana (17% AMI)

- 5 large utilities, greatest AMI penetration is
 7%
- No major regulation regarding AMI / IoT

Massachusetts (3 %) vs. Rhode Island (0% AMI)


- One electric utility operates in RI
- Same utility operates in MA AMI & data access available

Key Take-Aways

- 1 loT energy technology is dynamic ecosystem signs of convergence are appearing
- loT energy infrastructure is spreading at varied rates
- Regulation is helping to drive adoption and growth; lack of regulation <u>may be</u> hindering adoption & growth
- Demand Side Management & Energy Efficiency professionals must plan for future, mitigate risks

Supporting the Virtual Power Plant

CADMUS

Andrew T. Machado, PE, CEM, LEED AP Senior Associate, Energy Services

Office (617) 673-7110
Andrew.Machado@cadmusgroup.com

- Facebook.com/CadmusGroup
- @CadmusGroup
- in Linkedin.com/company/the-cadmus-group