

Optimizing Lighting Control Performance: The New Frontier

ACEEE MT Symposium April 21, 2015

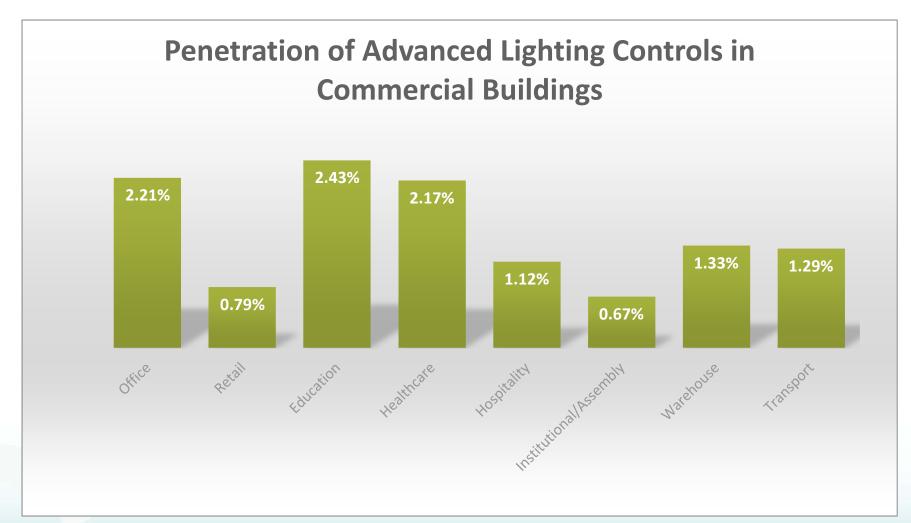
Gabe Arnold
NEEP/DLC Program Manager

Where are we now with controls?

Northwest Region Indoor Lighting Power by Control Type and Building Type

Control	All	Assembly (n=104)	Food	Grocery	Lodging	Office	Residential	Retail	School	Warehouse	Other
Type	(n=791)		Service	(n=69)	(n=69)	(n=113)	Care	(n=129)	(n=72)	(n=43)	(n=81)
Manual	2,087 73% ± 2%	279 77% ± 6%	(n=43) 53 87% ± 7%	63 72% ± 8%	121 86% ± 3%	448 68% ± 6%	(n=68) 118 91% ± 3%	447 68% ± 7%	139 61%±8%	211 83% ± 7%	208 76% ± 6%
Occupancy Sensor	224	27	0	1	1	73	3	12	34	43	32
	8% ± 1%	7% ± 4%	0% ± 0%	1% ± 1%	1% ± 1%	11% ± 4%	2% ± 2%	2% ± 1%	15% ± 5%	17% ± 7%	12% ± 4%
EMS System	256	33	2	6	0	45	1	120	30	0	18
	9% ± 2%	9% ± 4%	3% ± 4%	7% ± 5%	0% ± 1%	7% ± 4%	1% ± 1%	18% ± 5%	13% ± 6%	0% ± 0%	7% ± 4%
Dimming	24	10	4	0	4	1	1	0	1	1	2
	1%±0%	3% ± 2%	7% ± 5%	0% ± 0%	3% ± 1%	0% ± 0%	0% ± 1%	0%±0%	0% ± 0%	0% ± 1%	1% ± 1%
Timeclock	74	7	0	2	2	31	1	28	2	0	2
	3% ± 1%	2% ± 2%	0% ± 0%	2% ± 3%	1% ± 1%	5% ± 3%	0% ± 0%	4% ± 3%	1% ± 1%	0% ± 1%	1% ± 1%
Photocell	13	0	0	0	1	4	0	8	0	0	0
	0%±0%	0% ± 0%	0% ± 1%	0% ± 0%	0%±0%	1% ± 1%	0%±0%	1% ± 1%	0% ± 0%	0% ± 0%	0% ± 0%
Other	126	5	0	5	0	50	0	33	24	0	9
	4% ± 1%	1% ± 1%	0% ± 0%	6% ± 3%	0% ± 0%	8% ± 4%	0% ± 0%	5% ± 3%	10% ± 5%	0% ± 0%	3% ± 2%
None (Continuous)	54	3	1	11	13	6	6	10	0	0	4
	2% ± 0%	1% ± 0%	2% ± 4%	12% ± 6%	9% ± 3%	1% ± 0%	5% ± 2%	2% ± 1%	0% ± 0%	0% ± 0%	2% ± 1%

Source: 2014 Commercial Building Stock Assessment, NEEA, Navigant, 2014


** US National Data via CBECS available in May 2015 at

http://www.eia.gov/consumption/commercial/

Where are we now with controls?

Source: NEEP, Navigant Consulting, December 2014

Where are we now with controls?

Utilization Rate within EE Programs less than 1%

Energy Efficiency Program	Number of Projects with ALCs	Total Number of Lighting Retrofit Projects	Utilization Rate
Efficiency Vermont (2011-2013)	<10 (2011-2013)	1,885	<0.5%
Cape Light Compact (2013)	0	291	0%
Burlington Electric Department (2013)	0	Unknown	0%
PSEG Long Island (2013)	<25	5602	<0.5%

Adoption Barriers

- Knowledge and experience
- Complexity
- Value proposition
- Lack of standardization
- Construction Process
- High Costs
- Effective EE program designs

Can Technology Solve This?

Integrated Wireless Controls hold tremendous promise

- Occupancy, Ambient Light, Temperature
- Wireless Antenna Built-In
- Fits ½" knockout
- Targeted to OEM Fixture Market
- Connects directly to open-standard DALI Drivers

- Xitanium SR LED Driver
- Targeted to OEM Luminaire Market
- Standard DALI 2.0 Connection & Power to Sensors
- Built-In Power Meter

Can Technology Solve This?

Integrated Wireless Controls hold tremendous promise

- Occupancy, Ambient Light
- Communicates wirelessly with other luminaires on system
- Current proprietary solution offered individually by some luminaire manufacturers
- Cree SmartCast, Philips SpaceWise, others on the way

Can Technology Solve This?

Integrated Wireless Controls hold tremendous promise

- Central Control and Monitoring
- Communicates wirelessly with central gateway
- Some systems include ambient, occupancy sensors built into luminaire
- Current proprietary solution offered individually by some luminaire manufacturers
- Cooper Lumawatt, Philips Starsense, Acuity Roam, many more already available

Benefits of Integrated Controls

- Reduced design cost and complexity by eliminating up-front sensor and control system layout.
 Lighting Layout = Control Layout
- Reduced installation cost and complexity by eliminating separate sensors, controls, and/or control wiring
- Reduced equipment cost through standardization of sensors & intelligence embedded and shipped with luminaire

Technology Alone Not Enough...

- Education still needed to improve awareness and knowledge of these technologies
- Tests & demonstrations for proof of concept
- Standards and standardization as early as possible to enable at-scale adoption
- Tools to estimate savings
- Utility incentives to reduce costs especially near term
- Effective Program Designs to support it

What we are doing about it: Commercial Advanced Lighting Controls Initiative

Advanced Control Demonstration Projects

Utility EE Program Specs and Qualified **Products List**

Training Programs for Designers and Installers

Advanced Control Savings Calculator

Support for **Industry Standards**

New Nationally Adopted EE **Program Offerings** With Funding Support From:

Natural Resources Ressources naturelles

Our Vision

By 2020...

- Every luminaire seen by EE programs is controlled
- Majority of luminaires are shipped from factory with embedded sensors, intelligence, meter
- Technology, installation cost and complexity dramatically reduced
- Market actors knowledgeable and skilled
- EE programs pay customers for reported savings –
 M&V is automated
- Lease and service based models have begun to proliferate through industry
- Consistent EE programs, strong industry partnerships

THANK YOU

Gabe Arnold, CALC Program Manager garnold@neep.org

781-860-9177, ext. 161

NORTHEAST ENERGY EFFICIENCY PARTNERSHIPS

91 Hartwell Ave., Lexington, MA 02421 www.neep.org