

Assessing the Role of Energy Efficiency in Microgrids

March 22, 2016 Bill Moran, Senior Power Delivery Engineer Mark Lorentzen, Vice President of Energy Services

www.trcsolutions.com

Learning Objectives

- Microgrid basics
- Microgrids as a force in Market Transformation
- Discuss the role of energy efficiency in the planning of a microgrid
- Share some key lessons learned while performing microgrid feasibility studies

About TRC

A pioneer in groundbreaking scientific and engineering developments since 1969, TRC is a national engineering, consulting and construction management firm that provides integrated services to three primary markets:

- Electrical Transmission, Distribution & Substation Engineering
- Energy Efficiency, Demand Response, Renewable Energy, CHP
- Communications Engineering

Growth Drivers

Reliability | Power Supply | Aging Generation Assets | Regulatory Transformation

TRC Microgrid Team *TRC Multi-discipline team*

Information Technology

What is a Microgrid and why should I care?

Today's Grid

Tomorrow's Microgrids

Microgrid Basics

As defined by the US Department of Energy,

"Microgrids are localized grids that can disconnect from the traditional grid to operate autonomously and help mitigate grid disturbances to strengthen grid resilience."

What is a Microgrid?

To put this another way,

"Microgrids are a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid and that connects and disconnects from such grid to enable it to operate in both grid connected or Island Mode."

- CT Public Act 12-148 § 7

Types of Microgrids

Microgrid Basics

Critical facilities kW demand = "The Load"

Distributed Generation (DG) = Creates power to operate independent of utility grid.

"Island Mode" = separated from utility grid, all loads supplied with power from DG.

"Grid Paralleled Mode" = DG resources operating in parallel with utility grid.

Distributed Generation Technology

Microgrid Basics

Microgrids are all about <u>kW</u> – **Demand & Capacity** Facility *demand* in peak kW required DG *capacity* in maximum kW delivered

Demand reduction affects required DG capacity.

Kilowatt/hours kWh = energy cost, savings. Affects operating cost, <u>not</u> DG capacity.

Distributed Generation for Microgrid

The power produced by DG must precisely match the demand of the combined loads -

"Coincident Load"

DG capacity must <u>always</u> exceed peak load -

"spinning reserve"

DG must be able to follow changing load.

- Base Load generation Near steady output
- Peaking Generation follows load/maintains frequency

DG operation in Grid Paralleled Mode

The DG required for Island mode will not be economically feasible without grid paralleled operation.

- DG operation in Grid Paralleled mode is all about efficiency.
- Reduces purchased electricity cost
- Time of day utility rate is advantageous
- Potential to provide Ancillary services. (Freq. regulation, volt/VAR support, Demand reduction resource.)
- May provide thermal energy, operation usually follows thermal load.

TRC Microgrid Team *TRC Multi-discipline team*

Information Technology

Environmental

What is a Microgrid and why should I care?

Are Microgrids a potential force in market transformation?

Climate Change Adaption

Photo source: Nasa

Public Policies Promoting Microgrids

- CT DEEP Microgrid Program
- CA "California Funds the Next Wave of Microgrids Paired With Renewables and Storage"
- Maryland Microgrid Task Force
- NY REV and NYSERDA NY Prize
- MA Microgrid Program

Innovators / early influencers in public policy

New York Reforming the Energy Vision (REV)

- "New York struggles with an aging electricity infrastructure, which will require an estimated \$30 billion infusion of capital over the next decade"
- "Half of New York's power will come from renewable sources in the next 15 years, under a new state energy plan"

Solar PV \$/Watt

Source: Bloomberg New Energy Finance & pv.energytrend.com

Microgrid Market Size Projection

http://www.navigantresearch.com/blog/why-california-will-lead-theworld-on-microgrids - March 2013

What role does energy efficiency play in a microgrid?

A New Multidiscipline Approach TRC Multi-discipline team

Information Technology

Environmental

A New Multidiscipline Approach

	Power Delivery Engineer	Energy Efficiency Engineer
Traditional Grid	kW – demand peak and min. to develop load profiles – 15 minute interval data	Energy Cost (\$) Savings, kWh/yr savings, MMBtu/yr savings, kW Savings (when applicable)
Microgrid	kW – demand peak and min to develop load profile – 5 minute interval data Existing or planning? PV, Emergency Power, EE upgrades, large motors, electric heat	Large kW demand peak savings Projected fuel costs within microgrid EE upgrades now and then overtime

The Meter is No Longer a Clear Divide

A New Multidiscipline Approach

Vulnerability Assessments (e.g., Threat Vulnerability Assessments & Risk Analysis) to help identify requirements & set goals

<u>Energy efficiency</u> within a microgrid may include upgrades on both sides of the meter.

"Customer-side" or the "utility-side" of the meter.

Microgrid Energy Efficiency

Microgrid Energy Efficiency

What is different from the current energy efficiency industry?

Building level "energy rates" may fundamentally change for "customers" located within microgrid

- Not as simple as checking the historical average or published utility rate structure – business models are more complex
- Efficiency gains "upstream" of the building may impact the delivered cost of energy. This may fundamentally change the cost structure and cost effectiveness of certain building level upgrades

Traditional EE Project Revenue Model

Stakeholder Primary Relationships Diagram

e- = energy services

\$ = cash flow

Microgrid Business Model

Core Microgrid: Revenue

Scenario w/ 5 year NYPA rate

<u>Item</u>		<u>Y1</u>		<u>Y25</u>	<u>Ann</u>	ual Average	<u>25</u>	Year Total
Traditional Revenue		-		-	-		-	
Huron Campus Bilateral Contract: Electric	\$	10,130,462.99	\$	23,831,373.00	\$	17,874,891.67	\$	446,872,291.85
Huron Campus Bilateral Contract: Thermal	\$	1,985,364.87	\$	2,706,867.65	\$	2,328,283.25	\$	58,207,081.35
Total Traditional Revenue	\$	12,115,827.86	\$	26,538,240.65	\$	20,203,174.93	\$	505,079,373.20
Ancillary Service Revenue								
Community Emergency: Demand Charge	\$	-	\$	-	\$	-	\$	-
Community Emergency: Electricity	Ś		Ś		Ś		Ś	-
NYISO Generator w/ PTID#: Capacity	\$	420,000.00	\$	420,000.00	\$	420,000.00	\$	10,500,000.00
NYISO Wholesale Market: Electricity	\$	2,045,876.40	\$	2,045,876.40	\$	2,045,876.40	\$	51,146,910.00
NYISO Emergency Energy Support: Electricity	\$	72,000.00	\$	72,000.00	\$	72,000.00	\$	1,800,000.00
NYISO Voltage Support: VAR	\$	11,757.00	\$	11,757.00	\$	11,757.00	\$	293,925.00
Total Ancillary Service Revenue	\$	2,549,633.40	\$	2,549,633.40	\$	2,549,633.40	\$	63,740,835.00
Total Revenue	\$	14,665,461.26	\$	29,087,874.05	\$	22,752,808.33	\$	568,820,208.20

Building Energy Efficiency vs. Add. Generation

Should we add additional capacity?

Should we invest in efficiency?

E.G. Chiller vs CHP Capacity

Chiller Replacement (9500 tor Lighting Improvement Low-cost ECMs from Bender and King report Estimated Installed Estimated Installed Estimated annual containing (in Million)	nated Peak D MW \$	emand Re	t (M) 21.85 4.8 0.2 Laction 5.30	4.54 0.30 0.23 5.07	MW MW MW		τ (M) 90	25	MW
Chiller Replacement (9500 tor Lighting Improvement Low-cost ECMs from Bender King report Estimated Installed For an Millions) per Estimated Installed For 5.07 MW (in N Estimated annual Construction avings (in Million)	ې جو hated Peak D MW \$ Aillions) \$	emand Br	21.85 4.8 0.2	4.54 0.30 0.23 5.07	MW MW MW		10	25	MW
Lighting Improvement Low-cost ECMs from Benomic King report Estimated Installed Control Millions) per Estimated Installed Control Millions) per Estimated annual control Avings (in Million)	ې nated Peak D MW چ Aillions) چ	emand Re	4.8 0.2	0.30 0.23 5.07	MW MW				
Low-cost ECMs from Bender King report Total Estimated Installed Estimated Installed Estimated annual containings (in Million)	<u>جمعی</u> nated Peak D MW \$ ۸illions) \$	emand Ret	0.2	0.23 5 07	MW				
Estimated Installed Estimated Installed Estimated annual content of the state of th	nated Peak D MW ¢ ⁄lillions) ¢	emand Re	5.30	5 07	P				
Total EstinEstimated InstalledIn Millions) perEstimated Installedfor 5.07 MW (in NEstimated annual cavings (in Million)	nated Peak D MW \$ Villions)	emand Rei	5.30	5 07	P				
Estimated Installed (Figure In Millions) per Estimated Installed (For 5.07 MW (in N Estimated annual (Figure avings (in Million)	¢ MW Aillions)		5.30						
Estimated Installed for 5.07 MW (in N Estimated annual davings (in Million)	/lillions) \$			M		\$	4.00		
Estimated annual devings (in Million)			26.85	м		\$	20.28	\	
			0.928	м					
Incremental cost to shall energy efficien			65						
Simple payback in	icy vo chini ç	•	0.	ears					
Notes									
Does not take into a nt value of therm	nal energy ge	enerz	additio	nal CHP ca	apacity				
Based on .05 per kW rrent rate. Micr	ogrid rate pe	r' .ill	need to	be used.					
Does not value emiss avings									
Assumption of no demanages under	migrogri								

Microgrid Phases & Role of EE

Feasibility – focus on large kW savings to reduce load. Compare investments in energy efficiency to generation.

Design – establish "delivered" costs of energy to the building based upon unique attributes of each microgrid. Identify EE opportunities and perform cost benefit analysis

Implementation – support installation of EE upgrades required for microgrid operation. Verify load reductions.

Operations – continued focus on EE to allow for growth

"The first thing we need to do is reduce the loads." (Energy efficiency can play a major role)

"I need megawatts, don't bring me a 100kW." (Permanent demand reductions are the primary concern during feasibility)

"We have grown accustomed to the notion that power is available in infinite supply."(The kW savings better be real or the system could go down in island mode)

Conclusion

- Microgrids may be a significant force in market transformation
- Microgrids require and will promote a multidiscipline approach and a shift to systems thinking
- Energy efficiency has a key role but requires a different approach
 - Approach varies by phase of the project
 - Efficiency gains upstream can impact building level EE cost-effectiveness
 - The requirement to island raises the stakes for everyone

Mark Lorentzen

P: 607.330.0322 | E: MLorentzen@trcsolutions.com

Bill Moran

P: 774.235.2602 | E: wmoran@trcsolutions.com

www.trcsolutions.com

www.trcsolutions.com