

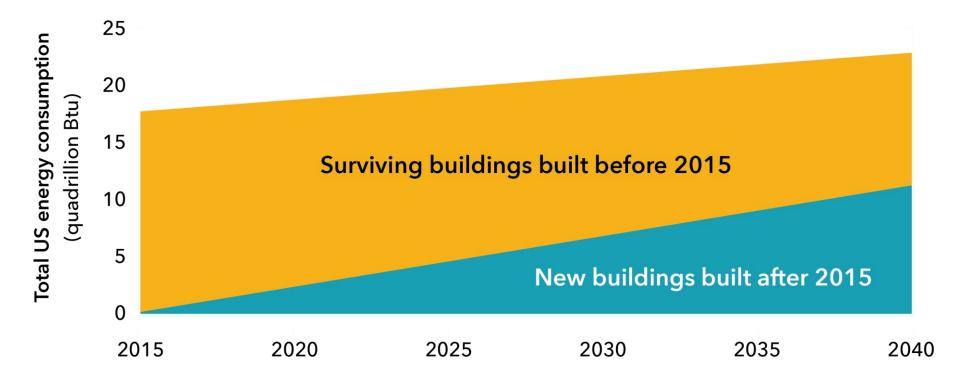
Accelerate Performance

Scaling the Outcome-Based Procurement Approach

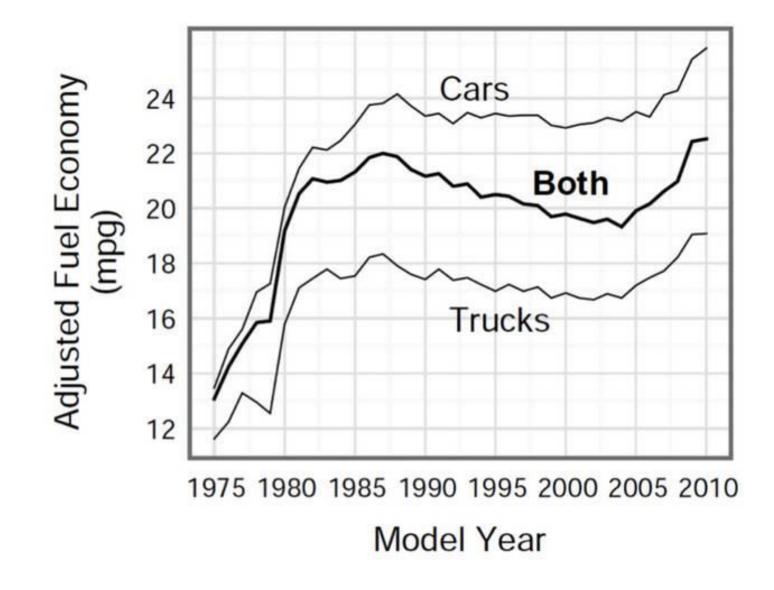
Ben Heymer, PE April 3, 2017

SEVENTHWAVE.ORG

ALL NEW BUILDINGS


"SUSTAINABLE" OR CERTIFIED

PERFORMANCE TARGET


ZERO ENERGY

FUTURE PROOF

Corporate Average Fuel Economy (CAFE) Standards

"My truck runs for Only $2\frac{1}{2}$ a mile" says W. E. Worthen, Jr. of Highlands, Texas

"I've always used Ford Trucks because they can't be beat for all-round ranch and farm work," says W. E. Worthen, Jr.

"Mucky rice fields and rough pasture never stop my faithful Ford Pickup! It sure can take it! The records I kept during the Economy Run

show that it costs mighty little to run! "In five months, my 1951 Ford F-1 covered 7,277 miles . . . much of it off-the-road. My total cost for gas, oil, maintenance and repairs was only \$175.94, which averages out to a running cost of less than 21/2 cents a mile."

FORD ANNOUNCES THE 21 MPG PICKUP

Now...great gas mileage

Now in tough '81 Fords: the highest estimated MPG

New compact rating

New van mileage

New 4 x 4 mileage

(27) - 39 日、

(19) 26 1

rating ever achieved by a 6-cylinder Ford Pickup.

Delivered by Ford's husky 300 Six...available in F-100/F-150 models that take payloads up to 2,530 lbs.1

Carnhoft

INCOLOGINAL FUELD

Course has im-proved highway mitrage for \$1.

Ford's business

estimatest MPG

AM \$1.4.55, (300 CAD) Tax and

Now 20% boost

maked MPO

Rust economy for lough Fund KW0

cover last year in

VAND ROLE

evals bett

in a full-size truck!

The famous Ford Pickup is but one of many models available. There's a Ford Truck tailor-made for your job, from half-ton Pickups to 155-h.p. Big

Now! Up to 14% more Gas Savings and more Speed Hauling power, too!

THIS new Ford 101-h.p. Cost Clipper Six passed, with flying colora, two years of economy and durability tests. One of the best-proved truck engines ever introduced, it had 50,000 ars, over 500,000 vehicle test-miles.

FINAL RESULTS FORD TRUCK ECONOMY RUN

DON'T GUESSI See how little it can cost to run a truck in your kind of work. See the cost figures in this 144page book showing results from the 50-million-mile Ford Truck Economy Run. See it at your Ford Dealer's now

new high-compression Ford Truck engines slashes friction loss!

There are important savings in store for you in new Ford Low-FRICTION truck engine design. It cuts friction horsepower up to 30 %! It saves gas! It gives you more Speed Hauling power!

New Ford Low-FRICTION design includes many new features. A new Short-Stroke principle cuts piston travel up to 20%, which makes for longer engine life. New OVERHEAD-VALVES give more efficient fuel-

extra power on regular gas.

You can get new Low-FRICTION design in three of the five great Ford Truck engines for '52. And you get more power than ever before in the famous 239 cu, in. TRUCK V-8 or 254 cu. in. BIG SIX. See what's new, at your Ford Dealer's.

NOW 5 GREAT TRUCK ENGINES New 101-h.p. Cost Clipper Six Proved 106-h.p. Truck V-8 Proved 112-h.p. Big Six New 145-h.p. Cargo King V-8 New 155-h.p. Cargo King V-8

FORD TRUCKING ONGER . COSTS LESS and

Using latest registration data on 8,069,000 trucks, life insurance experts prove Ford Trucks last longer

1952 **10 mpg**

1981 21 mpg

Tough new Fords...

higher ratings for 1981.

29 HAT

F-100/F-150 with 4.9L (300 CID) Six

and 4-speed overdrive option. EPA EST MPG with std. 3-speed:

20 MPG 27 estimated HWY

New Bronco rating

New V-8 mileage

More about mileage

"EPA ASIL MPG (18) 10 124 10

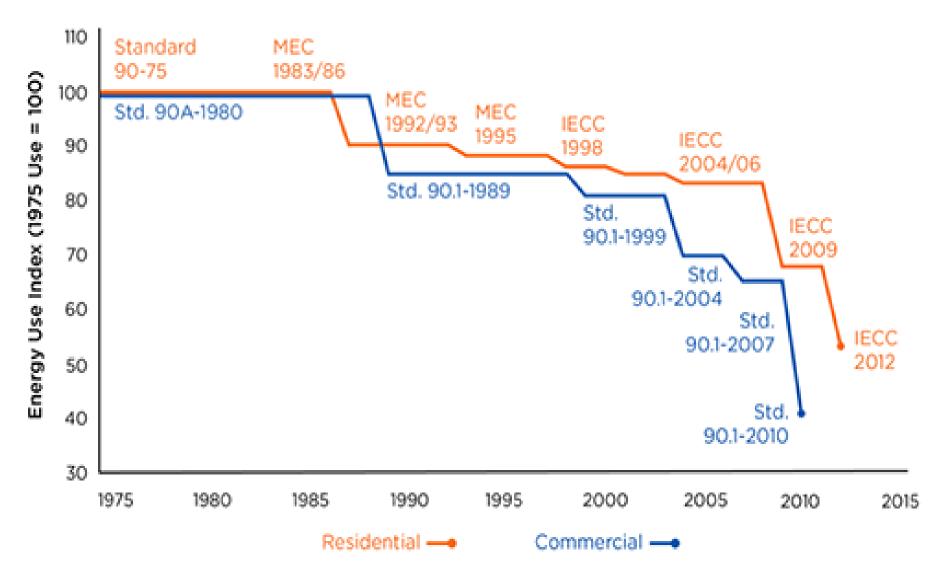
4.65, (300 CIEN) Six shows 20%

over test year

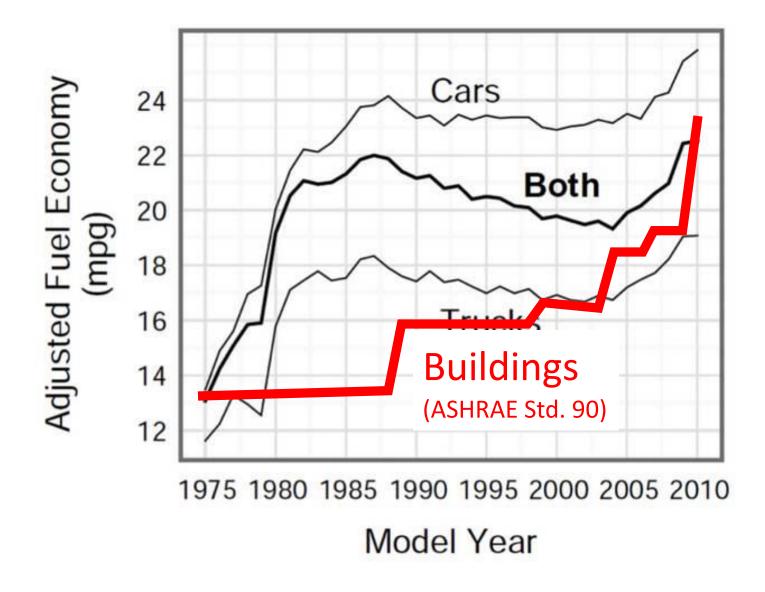
Meartnes 4 21

(255 CID) V-8

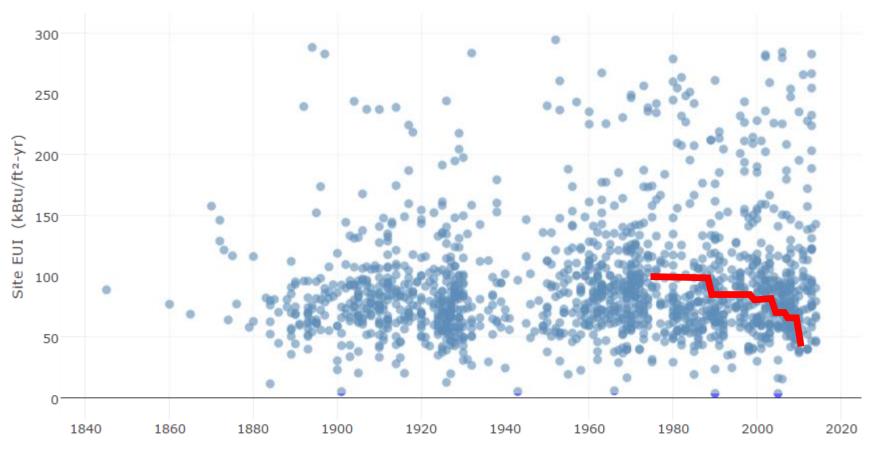
tor V-b Ford


"Use for comparison. Your mixuage may differ depending on speed, distance and weather. Actual highway minosite will probably be less them astmathic California interfere lesser. A comparison are to TBB. Find softwickes. Bee your dependent to the TBB. EPA Gas Milesge Gants.

I With optional manual presiding transmissions


AND FROM AND

Convertient BATENCE


Energy Codes

Buildings Lag Automotive By 30 Years

Chicago Benchmarking Data

Year Built

"The greatest opportunity to identify and influence deep savings is pre-schematic design, where the program supports quick early simulations and EUI targeting."

-ACEEE New Horizons for Energy Efficiency: Major Opportunities to Reach Higher Electricity Savings by 2030; Dan York, Steven Nadel, Ethan Rogers, Rachel Cluett, Sameer Kwatra, Harvey Sachs, Jennifer Amann, and Meegan Kelly; September 2015.

seventhwave ACCELERATE PERFORMANCE

3 year **Department of Energy** initiative to scale performance-based procurement

TEAM

Seventhwave

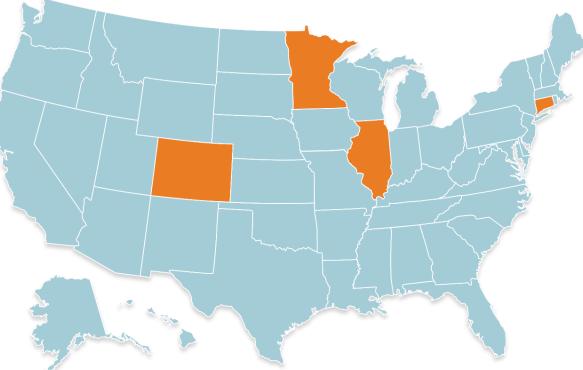
National Renewable Energy Laboratory

Institute for Sustainable Energy

UTILITY PARTNERS

ComEd

- Eversource
- **United Illuminating**


Xcel Energy

OWNER PARTNERS

University of Chicago

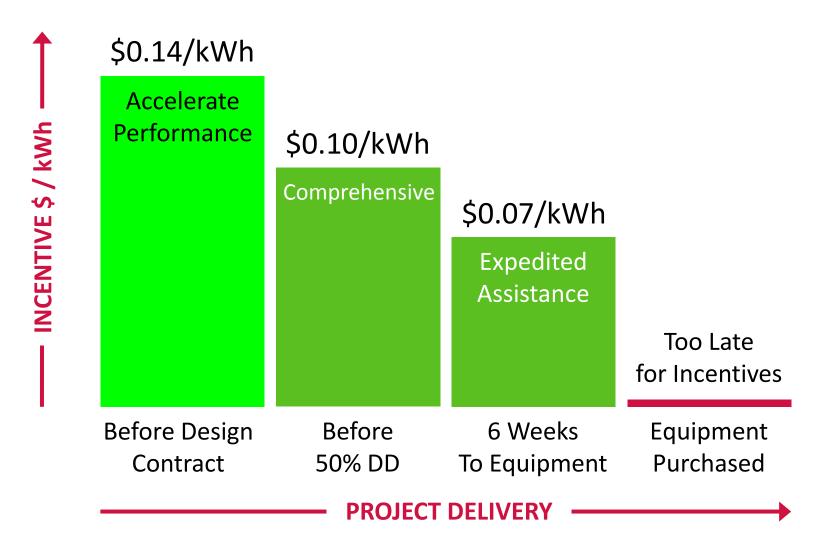
PARTNERS

Center for Sustainable Building Research

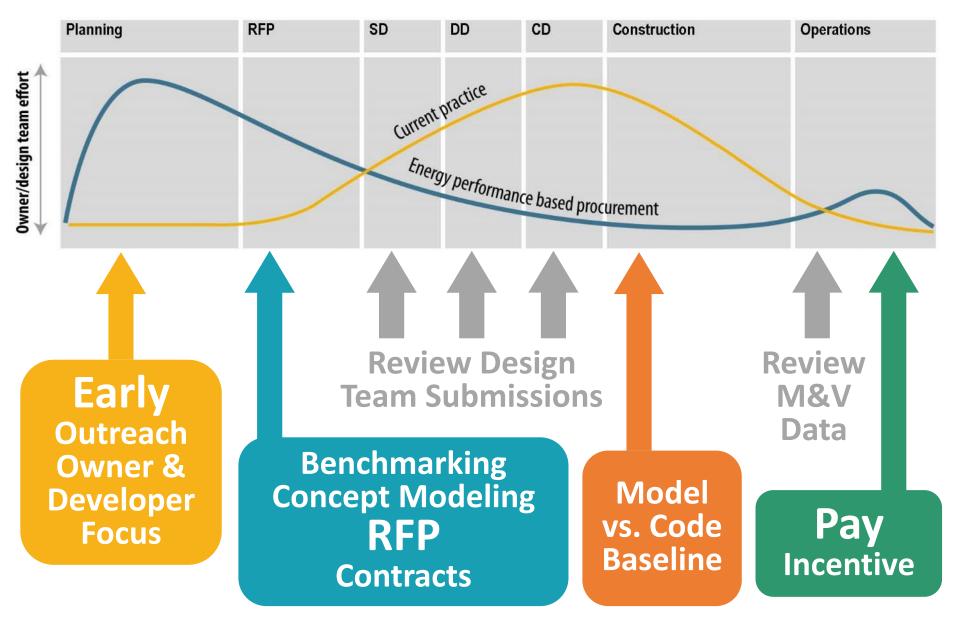
New Construction Program Benchmarking

PROGRAM DESIGN COMPARISON									
	ComEd	Xcel MN	Xcel CO	Focus on Energy	MidAm	NGrid	ETO	SBD	NYSERDA
Single TA provider			2						
Closed network		2							
Open network		4							
Multiple tracks	*								-
Scaled incentives based on performance									
Scaled incentives based on technology									
Design firm incentive									
per kWh incentive									
per kW incentive									
per therm incentive									
per SF incentive									
EUI incentive									
Minimum savings threshold				1					
Incentive cap									
Post-construction support									
Net Zero support									
LEED support									

Motivators



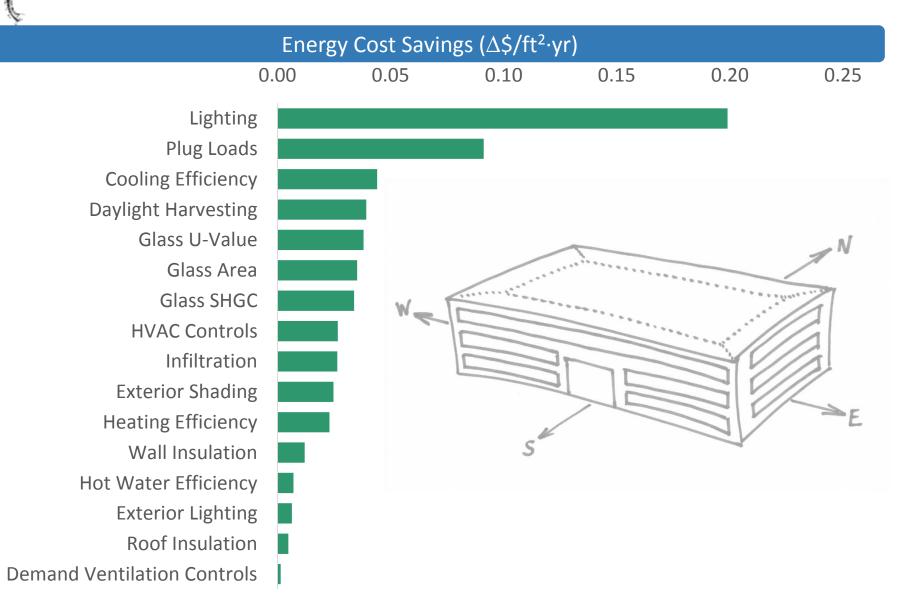
- Have campus/portfolio carbon goals
- Disappointed with new buildings
- Understand investment opportunity, need to manage risk
- Want zero energy, need a process
- Keep design and contractor team focused on measurable goals


- Develop an industry leading program
- Premium customer service
- Support projects with aggressive goals
- Meet increasing savings goals despite advancing codes
- Prepare for outcome-based codes (and pay for performance)

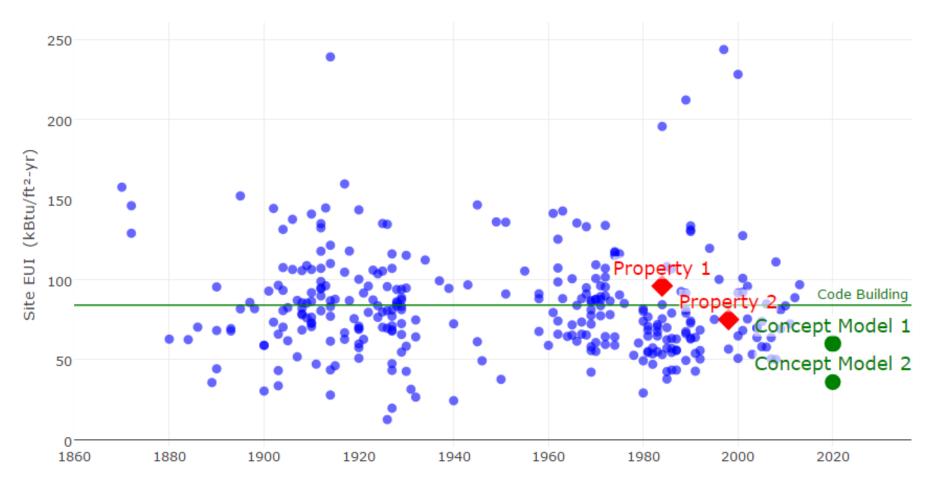
ComEd New Construction Incentives

I ACCELERATE PERFORMANCE

seventhwave | ACCELERATE PERFORMANCE


ECM #3 – Improve Glazing Solar Heat Gain Coefficient			Disable Measure
Baseline Glazing Solar Heat Gain Coefficient: 0.4	Better 0.3	Best 0.25	Custom

ECM #4 – Efficient Interior Lighting			Disable Measure
Baseline Interior Lighting Power: $0.9 \frac{W}{ft^2}$	Better 0.73	Best 0.5	Custom



seventhwave AC

| ACCELERATE PERFORMANCE

seventhwave | ACCELERATE PERFORMANCE

Year Built

seventhwave Zero Energy Feasibility Calculator

seventhwave.org

Energy Production												
	Energy Use						Surplus					
0	10	20	30 Source-adjus	40 50 60 70 ted Energy Use Intensity (kBtu/ft²-yr)				80	90			
Energy												
Parameter Description		Unit	Value									
Source Energy Import kBtu/ft ²		kBtu/ft²-yr	69.5									
Source Energy Export kBtu/ft ²		kBtu/ft²-yr	7	9.1								
Renewable Energy Surplus kBtu/ft ²		kBtu/ft²∙yr		9.6								
Renewable Energy Shortage kBtu/ft ² ·yr			-									
Zero energy is physically			feasible									
Simple	Cost Sum	mary										
Parameter	Description		Unit	Value								
Cost of bui	ilding		\$	25,000,0	000							
Cost of PV	, installed		\$	2,378,3	318							
Total cons	truction cost		\$	27,378,3	318							
Total cons	truction cost		\$/sqft	2	274							

seventhwave I ACCELERATE PERFORMANCE

Develop RFP Documents

Mission Critical:

Meet building program requirements Standard of care for ventilation Energy performance of 50 kBtu/gsf annually Measurement and verification plan Energy Star certified

Highly Desirable:

Energy performance of 40 kBtu/gsf annually Natural ventilation Provide high quality natural daylight Automatic fault detection and diagnostics system

If Possible:

Zero energy ready Zero energy building (DOE/EE-1247 definition)

New hospital \$600 million Energy Star Score: 19

Energy Retrofits to Historic Buildings

University of Chicago

EUI Target **75** kBtu/gsf·yr (site)

La Willer

1.22

Campus North Residence Hall

Big Deahl Mixed Use Development

EUI Target **36** kBtu/gsf·yr (site)

Image used with permission of Structured Development

Thank you

Ben Heymer, PE

bheymer@seventhwave.org 608.210.7187

www.seventhwave.org/accelerateperformance

SEVENTHWAVE.ORG